

Table of Contents
Introduction...1

Release notes..1
Brief history of ICM...7
ICM distribution and support...8
What can you do with ICM? (a program overview)..8

Graphics..8
Simulations..10
Sequence analysis...12
Modules of ICM..15

Notational conventions...17
Common abbreviations..17
Getting started..18

ICM-shell..18
The first steps..20

ICM Scripting Tutorials...21
Instructions...21
Guide to the Tutorials...22

Scripting_Basics.icb..22
Scripting_Workshop_MolObjects.icb...22
Scripting_Workshop_ICM_Scripts.icb...22
Scripting_Workshop_Tables.icb...22
RegExpr.icb...22
Scripting_Workshop_GUI_Programming.icb..23
Scripting_Workshop_ActiveICM.icb...23

Reference Guide..25
ICM command line options..25
Command line editing..26
Graphics controls..26
Editing pairwise sequence-structure alignments..29
Constants..29
Subsets and Index Expressions..30
Molecule intro..32
Selections...32

Selection Types...32
Selection levels...33
Examples...33
Select by number, range, name or pattern...33
Object selection...33
Molecule selection..34
Residue selection...35
Atom selection..37
Free and all variables (v_ and V_)..39
Functions returning selections..40
Finding contiguous residue ranges with the String function...41

Regular expressions (regexp)...41
ICM regular expression syntax...41

Parsing XML example: DrugBank...42
Hierarchical cluster trees..45

Selecting N representatives from clusters...45
Arithmetics...46

Assignment..46
Arithmetic operations..46
Logical operations...48
In place operations..48
Comparison operators...48
Advanced operations and some comments...49

Flow control...50
Loops...50
Conditional branching...51
Jumps..51

ICM molecular objects...52
Energy and Penalty Terms...53
Integer shell parameters...56

autoSavePeriod..56

i

Table of Contents
Reference Guide

defSymGroup..57
i_out..57
i_2out..57
maxColorPotential..57
maxMemory..57
minTetherWindow..58
mnSolutions..58
mncalls..58
mncallsMC..58
mnconf..58
mnhighEnergy...59
mnreject...59
mnvisits...59
nLocalDeformVar...59
nSsearchStep...59
nProc...59
randomSeed...60
segMinLength...60
sequenceBlock..60
sequenceLine...60
surfaceAccuracy..60
windowSize...61

Real shell variables...61
addBfactor...61
alignMinCoverage...61
alignOldStatWeight...61
axisLength...62
clashThreshold..62
cnWeight...62
consensusStrength...62
dcWeight...63
COLOR.bg : background color in 3D graphics..63
COLOR.distanceAtom : default colors of interatomic distances..63
COLOR.label... default colors of labels..63
CONSENSUS_strength..63
densityCutoff...63
dielConst...64
dielConstExtern...64
drop...64
fogStart..64
gapExtension...64
gapOpen..65
gpWeights...65
hbCutoff..65
lineWidth...65
listUpdateThreshold..65
mapSigmaLevel..66
mapAtomMargin...66
mcBell...66
mcJump...66
mcShake..66
mcStep...66
mfWeight..66
mimelDepth...67
mimelMolDensity...67
r_out..67
r_2out..67
resLabelShift...67
rsWeight..68
selectMinGrad...68
selectSphereRadius...68
sfWeight..68
shininess..68
ssThreshold...68

ii

Table of Contents
Reference Guide

ssWeight..68
ssearchStep..69
surfaceTension..69
tempLocal..69
temperature..69
timeLimit...69
tolGrad..70
tolFunc..70
tzWeight..70
vicinity..70
vwCutoff...70
vwExpand..70
vwExpandDisplay...71
vwSoftMaxEnergy..71
waterRadius...71
wireBondSeparation..71
xrWeight..72

Logical variables..72
l_antiAlias...72
l_autoLink...72
l_bpmc...72
l_breakRibbon...72
l_bufferedOutput...72
l_bug..72
l_caseSensitivity..73
l_commands..73
l_confirm...73
l_easyRotate..73
l_info...73
l_minRedraw...73
l_neutralAcids...73
l_out..74
l_print..74
l_racemicMC...74
l_readMolArom...74
l_showAccessibility..74
l_showMC...75
l_showMinSteps..75
l_showResCodeInSelection..75
l_showSpecialChar..75
l_showSites...75
l_showSstructure...75
l_showWater...75
l_showTerms...75
l_updateLists...75
l_warn..76
l_wrapLine..76
l_writeStartObjMC..76
l_xrUseHydrogen..76

String variables...76
s_alignment_rainbow..76
s_blastdbDir..77
s_editor..77
s_entryDelimiter..77
s_errorFormat..77
s_fieldDelimiter..77
s_helpEngine...78
s_icmhome..78
s_inxDir...78
s_icmPrompt...78
s_imageViewer..78
s_javaCodeBase..79
s_labelHeader..79
s_lib...79

iii

Table of Contents
Reference Guide

s_logDir...79
s_out..79
s_pdbDir..79
s_pdbDirFtp..80
s_pdbDirWeb..80
s_projectDir...80
s_printCommand...80
s_prositeDat..80
s_psViewer..80
s_reslib..80
s_skipMessages : ignore specific error messages...81
s_sysCp...81
s_sysLs and s_sysLtt...81
s_sysMv..81
s_sysRm..81
s_tempDir..81
s_translateString..82
s_userDir...82
s_usrlib (obsolete)...82
s_webEntrezLink..82
s_webViewer...82
s_xpdbDir..82

Preferences...82
Persistent Preferences...83
accessMethod..83
alignMethod..84
atomLabelStyle...84
atomSingleStyle..84
cnMethodAverage...85
compareMethod..85
dcMethod..85
electroMethod...86
errorAction..86
exitSessionStyle..86
ffMethod..87
gcMethod..87
highEnergyAction...88
interruptAction..88
mfMethod..88
minimizeMethod...88
pdbDirStyle...89
rejectAction...89
resLabelStyle...89
ribbonColorStyle...89
ribbonStyle..90
sequenceColorScheme..90
shineStyle..91
surfaceMethod...91
tzMethod...92
varLabelStyle..92
visitsAction...92
vwMethod...93
webEntrezOption..93
wireStyle...93
xrMethod...94

Tables...94
CONSENSUS...94
CONSENSUSCOLOR..94
FILTER...95
FTP..95
GRAPHICS...96
GRID...107
GROB..108
GUI..108

iv

Table of Contents
Reference Guide

IMAGE..109
LIBRARY...112
OBJECT..113
PLOT...113
SITE..115
TOOLS..116
WEBLINK..119
WEBAUTOLINK...120

Other shell variables...120
defCell...120
accFunction...120
gapFunction...121
I_out..121
M_out..121
R_out...121
R_2out...122
S_out...122
swissFields..122
readMolNames..122
Named Atom/Residue/Molecule/Object/Variable Selections...122
as_out..123
as2_out..123
vs_out..123

Chemical arrays and tables. Operations, virtual chemistry..123
SMILES and SMARTS..125
SOAP services and communications..126
Creating your own GUI elements: Programming GUI..128
Commands..134

add...134
alias...138
align...139
append (commands)..143
assign...144
break..145
build..146
call...151
center...152
clear...152
color..153
Coloring 2D molecules in a chemical table..156
How to color grob surface by depth..156
compare: setting conformation comparison parameters for the montecarlo command..........161
compress..163
connect..164
continue...166
convert...166
copy...170
crypt..170
Date data-type...170
delete ICM shell objects..171
display...179
edit...192
elseif..192
endfor..192
endif..192
endmacro...192
Enumeration of stereoisomers...193
Tautomer enumeration..193
Combinatorial library enumeration...194
endwhile..195
exit...195
find..195
fix..203
for..203

v

Table of Contents
Reference Guide

fork..203
fprintf..204
function...204
global command..205
goto..205
group...205
GUI and Programming Dialogs in ICM..209
help..210
history..211
if..211
info..211
keep...212
join tables..212
learn from a training data set and create a predictive model...214
Link or assign reaction group arrays to a Rx positions on a chemical scaffold......................215
link internal variables of molecular object..215
Link chains/molecules to sequences and alignments..216
list..217
list the content of the icm binary file..217
list available sequence databases..218
list directory..218
list molcart...218
load..218
ICM-shell macros and functions...220
make..222
minimize..242
menu..245
modify...246
Circular permutation of x,y,z coordinates and cell parameters...247
Chemical modifications..248
montecarlo...250
move..255
pause..256
plot..257
plot area: show matrix values with color..258
predict..259
print...259
print bar : showing progress bar from ICM shell..260
printf..260
print image..260
Run SQL queries...261
quit..261
randomize..261
read..262
rename...283
return...284
rotate..285
select..286
set family of commands..287
show..320
sort...332
split..334
sprintf..336
store...336
ssearch...337
strip..338
superimpose..338
Iterative search of the best atom pair subset for superposition...340
sys (or unix): system command..341
test...342
then..343
transform...343
translate...344
undisplay...344

vi

Table of Contents
Reference Guide

undisplay window...345
unfix..345
wait..345
web..345
while..346
write..346

Functions..362
Abs..363
Acc..363
Acos..364
Acosh..364
Align..364
Angle...367
Area...367
Asin...370
Asinh...370
Ask..370
Askg..371
Atan...372
Atan2...372
Atanh...372
Atom..372
Augment..373
Axis...374
Blob...374
Bfactor...375
Boltzmann...375
Box..375
Bracket..376
Cad..376
Ceil..378
Cell..378
Charge...378
Chemical function. Converting and Generating library compounds......................................378
Cluster...380
Color..381
Consensus..382
Contour..382
Corr...383
Cos..383
Cosh..383
Count...383
CubicRoot...384
Date...384
Deletion...385
Descriptor..386
Det...386
Disgeo...386
Distance...387
Eigen...392
Energy...392
Error..394
Error (for SOAP messages)...395
Exist..395
Existenv...396
Extension...396
Exp..396
Field..396
File..398
Find...399
Floor..400
Formula...400
Getarg..401

vii

viii

Introduction

ICM stands for Internal
Coordinate Mechanics and was
first designed and built to
predict low energy
conformations of biomolecules.
ICM also is a programming
environment for various tasks
in computational structural
biology, sequence analysis and
rational drug design. The
original goal was to develop
algorithms for energy
optimization of several
biopolymers with respect to an
arbitrary subset of internal
coordinates such as bond
lengths, bond angles torsion angles and phase angles. The efficient and general global optimization method
which evolved from the original ICM method is still the central piece of the program. It is this basic
algorithm which is used for peptide prediction, homology modeling and loop simulations, flexible
macromolecular docking and energy refinement. However the complexity of problems related to structure
prediction and analysis, as well as the desire for perfection, compactness and consistency, led to the
program's expansion into neighboring areas such as graphics, chemistry, sequence analysis and database
searches, mathematics, statistics and plotting.
The original meaning became too narrow, but the name was kept. The current integrated ICM shell
contains hundreds of variables, functions, commands, database and web tools, novel algorithms for
structure prediction and analysis into a powerful, yet compact program which is still called ICM. The seven
principal areas are centered around a general core of shell-language and data analysis and visualization.

Release notes
In this section we keep track of all the latest changes in different modules of ICM.

Version 3.8-1 Mar 13 2014

Added search in PubChem from the general search toolbar•
sort table column is added•
fixed repaint issue of the frozen column in the table.•
_molScreen script and corresponding KNIME node is added. (interface to 2D fingerprint and 3D
pharmacophore models)

•

SAR analysis command is added.•
R-group decomposition supports R-groups with more than one heavy neighbor. (e.g: R1 in
a ring)

•

Peptide builder from extended list of amino acids•
Fixed crash on Linux when locale set to some non-English (e.g: de_LU.utf8)•

Version 3.8-0

Export of chemical structures, alignments and plots to Windows Meta-file (WMF) now has
anti-aliased fonts and smooth line connections.

•

Fixed crash on compress grob command•
Anaglyph stereo mode is added.•
added interface to BLAST search at NCBI (main Search bar in GUI)•
added Extended Connectivity Fingerprints (ECFP)•
Fixed bug with table selection in macros when table with the same name exists globally.•
xstick transparency mask, atom and residue font size and family now are stored in slides.•
Ctrl +/- in the table view resize the cell size (in addition to font size)•
Chemical Search dialog allows to select an existing chemical table for Molcart or local search.•
base html path is set correctly for commands like: read html "http://google.com"•
Chemistry/Full Model Panel is added•

Introduction 1

Added macro and GUI to export object's stack as a movie. (Right click on the object: Tools/Export
Stack")

•

Covalent docking in "batch" mode in the ligand editor.•
"Find in alignment" supports wildcard patterns: N?[TS]•
Added confidence interface visualisation in table plots. (see make plot command and GUI
dialog)

•

InChI support. InChi(X_chemical [key]), Chemical(S_inchi)•
Name(user) returns OS user name.•
"copy off" option for set field command to prevent field from being copied with copy object
command.

•

Added macro and GUI to export slides as a movie•
added ToxScore function into Insert Column Dialog•
fixed several issues with sugar molecules representation in the workspace•
recursive SMARTS of more than one level are supported.•
row heights are preserved in ICB file•
added GUI interface to add image column and modify its contents•
Fixed crash when deleting 2D label which was used in slides.•
set type mmff on the converted object does not change aromatic bond type to pure aromatic•
added GUI.font•
added support for recursive SMARTS in R-group decomposition (e.g: [R1;$(CCN)])•
Distance chemical supports nProc•
Fixed a crash in 2D label edit dialog (image list)•
Image column is exported to Excel.•
Added the ability to add custom functions into 'Insert Column' dialog. (see gui programming
for details)

•

Dynamic grouping by column•
_chemSuper preserves original columns•
Combined "Pretty" view from docking hit list and Ligand Editor.•
set site alignment and delete site alignment are added•
added simple=S_cols option for read table mol to prevent type guessing (keep column as
sarray)

•

fixed some issues with HTTP.proxy•
write image alignment and set property alignment commands•
added support for STL mesh format (popular for 3D printing). Example: write grob g_mesh
"mesh.stl"

•

PubChem CID lookup function and Insert column of pubchem CIDs into a chemical table•

Version 3.7-3b

added search in POCKETOME option to the main search bar•
added clusterTableApf macro•
Wire color is not saved in ICB file. FIXED•
Wire thickness is not saved in ICB file. FIXED•
Fixed inability to drag distance labels after changing font.•
added R/S labels display in the 3D ligand editor•
added optional normal vector argument to Grob("ELLIPSOID"|"TORUS"|"CYLINDER" ...)•
plot labels now support '\n'•
fixed bug in title label for histogram plot with multiple series.•
icm.gui 'REQUIRED' checks for empty selection•
KNIME nodes v1.01 (Ligand selection in MolDockPrep module, new options in the MolDock
module)

•

Added Kernel Regression model. (`learn{ lean type="nn" })•
added support for MOL V3000 extension format.•
optimized core replacement search speed•
added blob support in the shell•
UTF8 encoding support in the terminal•
Column format dialog works with column selection.•
OpenMP support nProc variable to toggle internal parallelization of ICM commands.•
Fixed bug in read grob from URL•
Fixed bug in write matrix into ICB file (if rows were reordered)•
Collection(table) and Table(collection) were added•
Added the ability to use ICM built-in functions in the function section of the add column
function command

•

makeIndexPdb macro also builds PDB ligand table which can be search by substructure from the
PDB search bar (just paste smiles or use molecular editor)

•

Added COLOR preferences (accessible through GUI Preferences dialog)•
Detachable tabs with tables, alignments and other objects. (Drag the tab outside and it will become
a separate window).

•

2 Release notes

Index(alig as_)•
alig[I_index] non-continuous sub-alignment•
added support for optional ph4 features and constraints•
added 'onSelectionChange' object named field to assign actions for selection changes in 3D•
added ability to link mesh to the object for simultaneous rotation, superimpose and display.•
added scanFilterHitlist macro to quickly filter large docking hit lists for top scored hits. (Integrated
into main scanMakeHitList macro and corresponding GUI dialog)

•

optimized read object for big files.•
added $ support in index expression. (refer to the last element of the array)•
Fixed bug in Date to String conversion. (week of the day and related fields are OK now)•
Added conditional expression support a?b:c•
Added 'delete query' option to modify chemical command to clear SMARTS search
attributes.

•

logical expression shortcuts: if (Nof(A)>=5 & A[5] == 1) ...•
added 'term' option in macro declaration: saves and restores energy terms after return from the
macro

•

balloon tooltip for cluster nodes (Right Click/Change Record Labels to specify list of columns in
the dialog)

•

better docking convergence in the Ligand Editor•
LIGAND.displayDockingMoves is set to 'no' by default•
new Area/Volume distribution for icmPocketFinder plot•
comments for stack conformations. (set comment store conf Name conf)•
Initial stack of ligand positions before docking in the ligand editor•
'MolArea' model is added to calculate accessible surface are for 2D chemical. Predict(
Chemical("CCCCO") "MolArea")

•

File.ICM Session.New/Clone added.•
JavaScript errors are printed to the terminal•
added Image(X_Chemical)•
covalent ligand support in the ligand editor.•
added triple-quote string constants (arbitrary length and content text can be easily used as string
constants)

•

make tree object fills "ORDER" atom field which corresponds to the original atom order.
(can be used to assign various properties)

•

added Chemical(R_react) and Chemical(X_chem, reaction) to convert reaction to chemical
and back

•

write image chemical supports HTML5 canvas export and does not require X11
connection on Linux anymore (can be used in various batch scripts, CGIs, etc.)

•

added Info model function to return prediction model properties.•
added Split([i_minSize] [i_maxSize] bond) to split molecule into a various fragments•
speed improvements in enumerate tautomer command•
Added String(macro all) to return macro source and all dependent macros.•
Added String(X_chem html) String(w_img html) to export chemicals and images into
in-line html representation

•

HTML5 canvas support for 2D drawing. (chemicals,plots,alignments,etc. ...)•
read json now accepts entries with multiple roots. (array on the top level)•
XML parser treat comments and CDATA correctly.•
added Select by alignment function•
fixed bug in select-alignment•
allow to use ICM user-defined functions in add column function•
_dockScan script is KNIME compatible. Added _dockProjPrep script to prepare docking project
in the KNIME work-flow.

•

new sugar view in the workspace.•
assign residue command•
Easy selection finder in the alignment ('Highlight Selection' checkbox in the tools panel)•
Balloon popup over plot elements. ('tooltip' option in the command line + GUI element in the
dialog). See make plot

•

LIGAND.displayDockingMoves option to control display of montecarlo moves in Ligand Editor
docking.

•

Version 3.7-2f Mar 13 2014

"locked" objects can be copied•
removed '*' from object/mol popup menus•

Version 3.7-2e

fixed rendering of down bond for scaled down compounds•
fixed false interpretation of '$' in single quoted strings•

Release notes 3

quotes are processed properly in dialog input elements•
JSON parser accepts array as a top element: Collection("['a','b']")•
fixed atom naming in llp residue according to PDB convention•
Interrupt button cancels read from url•
grob clipping works with wire and dot representation.•
Fixed read pdb with 'non-standard' hydrogen names•
Optimized speed of the write map command•
Fixed inverted stereo in problem after "Extract ligand" in some cases.•
Mouse wheel in the workspace scrolls again.•
Fixed display of the variables in the Ligand Editor: Display Strain•
Fixed bug in copy/paste of single table column with empty rows.•
HTML tags from column format are not exported into SDF file•

Version 3.7-2d

Added docking hitlist filtering macro to get N top scored poses. scanFilterHitlist. (The option is
also available in the GUI "Make hit list" dialog)

•

fixed bug in Formula for structures with no hydrogen.•
Removed unnecessary ligand surface rebuilds in the Ligand Editor•
Fixed bug in display slide when skin representation wasn't preserved.•
Index(X, X atom map function is added to find atom number correspondence between two
chemicals

•

fixed nested index access to collection•
Fixed crash in make map potential•
Unix and Mac: "Save project As" works if path contains spaces.•
Windows only: -R option sets stdin/stdout to binary mode which makes possible to use pipe-able
scripts in KNIME nodes

•

fixed numerical instability in minimize•
fixed bug in make reaction•
_confGen and _chemSuper can be used in unix pipes and KNIME nodes•
Min/`Max functions work with datearrays•
Fixed bug recently introduced in IcmSequence function•

Version 3.7-2c

Major new Features:

New linker and core replacement tool in the 3D ligand editor•
Easy way to write pipe-able scripts (see $ICMHOME/molpipe/*.icm).•
Easy way to add parallelism to unix/mac ICM scripts: fork with pipe option
($ICMHOME\molpipe*.icm)

•

copy/paste and drag'n'drop between icm sessions (images, molecular objects, meshes, tables)•

New Features:

Added Collection(t|t.column format) to get the various column properties as a
collection object.

•

Added Table(model chem [inverse]) function.•
reading large file by chunks (read file by chunk) now supports zipped file.•
Score(X_3Dn [X_3Dm] [similarity|distance]) → M_nxm apf_scores normalization of apf
cross-scores.

•

added option=s_filename argument for make plot command which allows one to generate plot
images in the batch mode.

•

added PDF/EPS format for saving plot as an image.•
rename of the object/mesh/map keeps slides and distances in consistent state.•
switching the receptor conformation in the ligand editor rebuild ligand and pocket surface if they
are present

•

Nof(fork) is added to get the number of available processors•
pipe options is added for fork command•
a_SLIDE. selection is added. Returns list of objects used in slides, also delete all compress•
learn remembers columns calculated with add column function to automatically
recalculated in 'predict and Predict

•

_chemSuper supports input from pipe.•
Slides now remember the conformation from the object's stack•
Added stack option for read mol command.•
read mol can read directly from chemical array•
Score(as_ as_ field) and Score(chem_array field) are added for APF clustering•

4 Release notes

Added stack option for read mol command to read SD file with multiple conformations as an
object with a stack.

•

Added export alignment to PDF or EPS. (Right click "Save/Export To Image/Save Image")•
Added support of the APF ligand based project in the 3D ligand editor.•
Srmsd(.. .. [weight|chemical] matrix) returns sarray of static RMSDs or, with option weight,
superposition errors computed according to the TOOLS.superimposeMaxDeviation
(consistent with r3_out of superimpose minimize)

•

Volume(R6 box)•
Table(residue) now returns residues from the icm.res and usr.res libraries. New residues added
for CME, CSD, CSO, HYP, KCX, LLP, PTR, SEP, TPO, TYS, and CIR modified amino acids.

•

read binary pdb s_4letter_code to read .icb files in pdb-style subdirectories according to the
s_xpdbDir root (also extended to allow http , e.g. s_xpdbDir =
"http://xablab.ucsd.edu/xpdb/"

•

term ts , TOOLS.tsShape and TOOLS.tsShapeData to allow soft penalties for atoms moving
outside certain shapes (sphere, box).

•

String(s [16|32] key) (hash function generating 8-character long keys) fixed; String(s hash)
added to generate stronger keys of length 26 or 32

•

added coloring for cluster nodes (heat maps)•
added Index compare function to compare different arrays•
parray supported as collection elements•
plot rendering speed is optimized significantly.•
added 'add exact' combination for make grob map command to allow absolute increment•
delete command works directly with index expression in collection (delete c["aaa","bbb"])•
individual atom ball&stick radius.•
added ability to read large portions of data by chunks (see: read file by chunk)•
added ND word. (for non-defined)•
Added HTTP.cookies collection to allow easier control over http cookies.•
GUI access to molecular named fields (see set field)•
added image rendering for 2D labels•

Bug fixes:

fixed bond removal in cyclopeptides in convert command.•
fixed crash in build tautomer command•
Fixed bug in map contouring with large buffer size values.•
Fixed bug in skin rendering in display stack•
Fixed bug in readUniprotWeb macro when l_references is 'yes'•
Fixed bug in "Filter Graphical Selection" dialog•
Fixed bug in S_ ~ s_ and S_ == s_•
Fixed rare crash in mc•
fixed bug in cis/trans smiles generation (when cis or trans bond is a ring closure bond)•

Version 3.7-2b

Fixed permission issue in Molcart on MySQL 5.5•
added output= argument for all show commands which allows one to grab the output for further
processing.

•

Improved rendering speed of xstick representation•
Fixed cis/trans depiction for R-group substituents in enumerate library•
Fixed memory few memory leaks when working with tables in macros.•
Fixed chemical formula generation for isotopes.•
copy/paste multiple cells from Excel into ICM spreadsheet.•
Fixed crash "Changing the final row in a filtered column crashes ICM" bugzilla: #697•
Fixed crash in pasting a column in the table with plot.•
XML parsing functionality. read xml, Collection, xml drugbank example•
fixed incorrect cis/trans bond interpretation in smiles. ((\R)C=C → R/C=C)•
new attachment point rendering style•
fixed parsing bug in cell hyper links (set format)•
fixed "interrupted system call" error in read http.•
chiral centers with an R-group attached are correctly treated (stereo is preserved by parity) in
make reaction.

•

smiles property for sarray columns in a table. Toggles on-the-fly 2D chemical depiction.•
Fixed bug with non-preserving center of rotation in slides after clipping planes were moved. (also
fixed in activeICM 1.1-5)

•

Multi-receptor support in the 3D editor•
make reaction allows arbitrary R-group numbering•
multiple drag-able resize-able images in set background image command•

Release notes 5

added 'Unlock ICB' function which clears read-only or password protection from ICB without
reopening it.

•

fixed few bugs in with password protected ICB files•
removing salts with modify chem delete salt•
preview for ICB files (Windows browser + ActiveICM)•

Version 3.7-2a

single quote string constant support.•
reader.icm script•
Logical(r|i|s)•
GRAPHICS.cpkClipCaps preference (1,2,3)•
SolveCubic(a,b,c,d | R_3|4 [all]) → R, SolveQuadratic(a,b,c | R2|3)•
fixed overlapping shaded and bordered boxes in alignment view. All view preferences now stored
in ICB.

•

WebKit integration is added•
other types of occlusion shading added (TOOLS.occlusionColorStyle = "dark outside" or "light
outside")

•

fixed bug with opposite rotation of connected molecules/objects or grobs•
delete sequence nucleotide|protein|peptide•
fixed rdpdb for consecutive atoms with identical coordinates, e.g. 1a69, ds skin molecule,•
Nof(bond [error]) Nof(selftether [error]), Select(selftether [error]), Select(bond [error])•
selftether treatment: set selftether , delete selftether , Srmsd(as selftether),
minimize "ts" , replaced tether= by selftether= in minimize montecarlo ; convert to set
selftether

•

improved convertObject (protonation of a_/U, minimize "ts" for the convert deviants)•
added output option for Rmsd and Srmsd function to store individual deviations into R_2out•
grouping by table column works with ND values correctly in aggregation operations.•
write gamess to write correct Z-matrix, memory limits.•
TOOLS.membrane, update icm.hdt, surfaceMethod="membrane" supported in Area(energy) and
energy evaluations.

•

bug with residue names for residue names starting from a leading blank after reading some pdbs
fixed. (previously was breaking 1ytw,2i42,3f9a,2i4e,1kpe)

•

CubicRoot(|)•
bug with crashes in find database fixed•
improving find database results (prioritize SC for HUMAN, ECOLI, BOVIN etc. in case of
identical scores)

•

a_J selection to filter short peptides.•
Name(sequences) returns an empty array (not error) when there are no sequences•
set column format supports internal ICM links.•
exclude and number options for learn atom command.•
set atom named fields is added•
anti-aliased and scalable fonts (atom/residue labels,etc) in 3D for windows and MAC•
Pattern(rs), selections a_/Bbarcode_like_A12L2L and a_/Qbarcode•
translation to a destination point for a molecular and object selections (see translate)•
new 2D compound rendering option: color rectangles on hetero atoms instead of atom labels. See
set property chemical view

•

fixed crash in Askg•
new Iarray(a_// topology) function•
new align sequence command (align number ..)•
new Select_by_sequence function•
find molecule sstructure drestraint ms1_inIcmObj ms2_inTheSameIcmObj added
to set drestraints by chemical similarity

•

delete link alignment ; link ms_ rewritten, many options added. autoLink action
improved.

•

join by structure column ignores hydrogens (3D can now be joined with 2D structures).
stereo off option is added to ignore chirality.

•

copy/paste and drag'n'drop between icm sessions (images, molecular objects, meshes)•
build tautomer and set tautomer can be applied to HIS residues•
ND support for individual real values•
large 64 bit integer support for integer variables•
Grob("cylinder", r_ra r_H)•
arbitrary length atom labels and ball radius (`set-label-atom and set atom ball command)•
search functionality in preference dialog.•
restore preference command is added (allows one to set system preferences and variables
to default values)

•

date type is introduced•
new annotation style for alignments•

6 Release notes

Charge/protonation state prediction using pKa model•
pKa predictions for bases and acids (`set-charge-auto command)•
GUI parser patched and icm.gui cleaned from in-line argument declarations to allow natural
command syntax (the percent symbol, like %i_out , is no long needed) in dialog descriptions

•

option to avoid sampling His, Gln, Asn, etc. and hydrogens upon convertObject added (allows one
to keep atoms as is)

•

concurrent multiple level contouring (with multiple colors) of distant density added•
read pdb improved to recognize unusual amino acids•
mmff treatment of two nitrogens in a fused aromatic ring improved•
set field can be used with alignments•
set color alignment is added•
Header(grob)•
make distance append behavior corrected (tool first order). Option make distance
append P_atompairs .. added.

•

superimpose P_atompairs os_movable command added•
set tether P_atompairs os_movable command added•
Area(grob error) returns the percentage of unclosed area (to detect surfaces that are not fully
closed)

•

Volume(grob) returns the percentage of unclosed area in r_2out•
copyMol, moveMol and jumping molecules•
not properly recognized chemical templates in 2D chem drawing•
unusual amino acids are not recognized (2jge)•
mmff treatment of two nitrogens in a fused aromatic ring problematic•
adding ligand (without receptor) to the table causes icm/C5H5N> processLigandSave Error>
[2191] index 1 of array out of range [1:0]

•

Brief history of ICM
ICM author's heads "in italic"

Ruben Max
The first lines of ICM were born in 1985 out of a desire to design a fast yet general framework for
predicting the structure of complex biological macromolecules and their complexes. I formulated a set of
requirements for a program for molecular mechanics in a full set of internal coordinates, and started
working on the internal coordinate algorithms and the Fortran code of the first program blocks. By 1991 the
batch parameter files were replaced by a command language and an interactive shell that looked quite
similar to the current version of ICM; the molecules started to follow commands and sample the energy
minima.
Max Totrov and I extended or rewrote most parts of ICM from 1991 to 1994. By 1993 several people
(Alexey Mazur, Mikhail Petukhov, and Dmitry Kuznetsov) had also contributed to the fortran version of
ICM, however their contributions did not survive in the current version of the program. Alexey pursued the
development of molecular dynamics in internal coordinates which was first formulated and tested in a
series of papers in 1989 and, later, branched out of ICM.
The all-C version of ICM emerged in 1994 as a result of a full rewrite. Some features were lost, but more
were gained. Serge Batalov joined the development of the program in the fall of 1994, about the time
Molsoft was founded. Another contributor to the code was Levon Budagyan.
Eugene is writing the graphics user interface, chemical functions and pretty much anything else. The three
of us work together to keep ICM strong, clean, healthy and alive.

Eugene

Brief history of ICM 7

ICM distribution and support
ICM is being developed, distributed and supported by Molsoft, LLC.
If you have any problem with our programs, go to the Molsoft Support Center at

 http://www.molsoft.com/help.html

or contact Molsoft via e-mail:

 support@molsoft.com

In the support center you can easily post a problem or make a suggestion and monitor its progress. Please
indicate the platform, the version of the program, and do not forget all the necessary files to reproduce it.
Some of the commands or functions described in this manual belong to specific modules and are not
available in the ICM-main program.

Note that the Molsoft website contains online documentation only for the latest version of the program.

What can you do with ICM? (a program overview)
Let us go through the short overview of the ICM application areas.
Graphics

ICM and ICM-derived plugins provide a viewing environment for large a small molecules and general
three-dimensional objects with or without textures. Various types of enhancements including stereo,
anti-aliasing, graphical layers, on-the-fly generation of shadows, occlusion shading, custom backgrounds,
depth cueing and simple rotation, translation, zooming, clipping, picking, continuous movements, separate

Versatile surface and structure views to elucidate protein function

The views include

binding and active site surfaces with mapped
properties

•

automatic identification and views of cavities and
open binding pockets

•

electrostatic surfaces•

Analytical molecular surface (skin)

The contour-buildup algorithm calculates the smooth and accurate analytical
molecular surface in seconds. This surface can be saved as a geometrical object,
saved as a vectorized postscript file.

The skin is used in the REBEL algorithm to solve the Poisson equation, as well as in the molecular surface
analysis routines (e.g. a projection of physical properties on the receptor surface).
Also ICM can build and draw a solvent-accessible surface (see surface) and

8 ICM distribution and support

* a Gaussian molecular density which can be contoured at different
levels and to generate different smooth molecular envelopes and
enclosed pockets and cavities:

 build string "HEK" ; display a_ xstick # tripeptide
 make map potential Box(a_ 3.)
 make grob m_atoms exact 0.5 solid
 display g_atoms smooth transparent

Schematic representations of DNA and RNA

PDB entry: 101d
ICM command:

 nice "103d"

PDB entry: 4tna
ICM commands:

 nice "4tna"
 color ribbon a_N/* Count(Nof(a_N/*))

Complex combined representations

Simplified molecular representations are built automatically (e.g.
the protein-dna complex is shown with one command: nice
"1dnk"). You can combine different types of molecular
representations with solid or wire geometrical objects.

Graphics 9

Molecular representations include wire models, ball-and-stick models, ribbons, space filling models, and
skin representation.

Simulations

Prediction of peptide structure from sequence

Take a peptide sequence and predict its three-dimensional structure.
Of course, success is not guaranteed, especially if the peptide is
longer than about 25 residues but some preliminary tests are
encouraging.

You will also get a trajectory file of your peptide folding up which can be interactively watched. Just type
the peptide sequence in the _folding file and go ahead.

High quality models by homology

ICM has an excellent record in building accurate models by homology. The
procedure will build the framework, shake up the side-chains and loops by
global energy optimization. You can also color the model by local reliability to
identify the potentially wrong parts of the model.

ICM also offers a fast and completely automated method to build a model by homology and extract the best
fitting loops from a database of all known loops (see build model and montecarlo fast). It just
takes a few seconds to build a complete model by homology with loops.

10 Simulations

Loop modeling and protein design

ICM was used to design two new 7 residue loops and in both cases the designs were
successful. Moreover, the predicted conformations turned out to be exactly right
(accuracy of 0.5A) after the crystallographic structures of the designed proteins
were determined in Rik Wierenga's lab. Use the _loop script to predict loop
conformations and calcEnergyStrain to identify the strained parts of the design.

Crystallographic symmetry

ICM has a full set of commands and functions to generate symmetry related
molecules and generate "biological units".

Docking two proteins

Docking two proteins reliably is still an unsolved problem. However, there has been a considerable
progress. In some cases (e.g. beta lactamase and its protein inhibitor) the ICM docking procedure predicted
the binding geometry correctly based only on the global energy optimization. ICM will generate a number
of possible solutions using both the explicit atom model of the receptor and the receptor grid potential and
refine them by explicit global optimization of the surface side-chains. Even though success is not
guaranteed, the generated solutions can be useful, especially if any additional information about the binding
is available.

Finding pockets and docking a flexible ligand to a receptor

As demonstrated in several recent papers, short flexible peptides can be
successfully docked ab initio to their receptors. This method is a blend of the
peptide folding with the grid potentials representing the receptor. A similar
method can be applied to any chemical. A chemical can be built from a 2D
representation and optimized. The "druggable" pockets can be predicted with an
algorithm based on the contiguous grid energy densities.

Simulations 11

Scanning a database of flexible ligands

In virtual screening the flexible docking is applied to hundreds of thousands of individual ligands. This
version of docking is fast and requires an accurate relative binding or ranking function to discriminate
between the true ligands and hundreds of thousands of potential false positives. The ligand sampling and
docking procedure is a combination of the genuine internal coordinate docking methodology with a
sophisticated global optimization scheme.

Accurate and fast potentials and empirically adjusted scoring functions have led
to an efficient virtual screening methodology in which ligands are fully and
continuously flexible.

Interactive docking and focused library design

ICM allows one to draw a molecule directly in 3D with full undo/redo support and check its fit to a protein
binding pocket. This environment is called a 3D ligand editor. The editor functionality is described in the
User Manual.

Calculating electrostatic potential

ICM incorporates a very fast and accurate boundary element solution of the Poisson equation to find the
electrostatic free energy of a molecule in solution. This algorithm (abbreviated as REBEL) can be used
dynamically during conformational search. The components of the electrostatic free energy are used to
calculate the binding energy and evaluate the transfer energy between water and organic solvents.
ICM uses generalized Born approximation to calculate the electrostatic solvation energy and its gradient
dynamically during local and global conformational searches.

The electrostatic potential can be
projected on a molecular surface for the
identification of possible binding sites.

Sequence analysis

12 Simulations

Genomics

Handling gigabytes of genomic sequence, fast cross-comparison of millions of sequences was another
challenge solved in the ICM program. ICM can identify a unique subset of millions of sequences, assemble
sequences from Unigene clusters into alignments (SIM4 program is used a part of the procedure).

Similarity dotplot: alternative alignments and repetitive subdomains

It looks like this:
Using the plotSeqDotMatrix macro:

 read sequence s_icmhome + "zincFing.seq"
 plotSeqDotMatrix 2drp_d 3znf_m \
 "Two z-finger peptide" "Human Enhancer Domain" 5 20

(if the macro complains
about s_psViewer ,
set it in
Preferences/Directories
, or reassign, e.g.
s_psViewer =
"display")

Here the color shows
the local significance of
the alignment. You can
change the method to
calculate probability,
color scheme and
residue comparison
matrices and calculate it
interactively or in
batch.

Pairwise sequence alignment and its significance

Make a pairwise sequence alignment and evaluate the probability that the two aligned sequences share the
same structural fold. The alignment is performed with the Needleman and Wunsch algorithm modified to
allow zero gap-end penalties (so called ZEGA alignment). The ZEGA probability is a more sensitive
indicator of structural significance than the BLAST P-value. The structural statistics was derived by
Abagyan and Batalov, 1997:

 read sequence s_icmhome + "sh3.seq"
 show Align(Fyn Spec) # the probability will be shown

You can change residue comparison matrices, gap penalties and do many alignments in batch.

The ICM alignment functions and commands are summarized in the alignment section.

Multiple sequence alignment

Read any number of sequences in fasta or swissprot formats and automatically align the sequences,
interactively or in a batch. It will look like this:

Consensus ...#.^.YD%..+~..-#~# K~-.#~##.~~..~WW.#. ~~.~G%#P.
Fyn ----VTLFVALYDYEARTEDDLSFHKGEKFQILNSSEGDWWEARSLTTGETGYIPS
Spec DETGKELVLALYDYQEKSPREVTMKKGDILTLLNSTNKDWWKVE--VNDRQGFVP-

Sequence analysis 13

Eps8 KTQPKKYAKSKYDFVARNSSELSM-KDDVLELILDDRRQWWKVR---NSGDGFVPN

nID 7 Lmin 56 ID 11.5 %
#MATGAP gonnet 2.4 0.15

ICM commands:

 read sequence s_icmhome + "sh3.seq"
 group sequences sh3
 align sh3
 show sh3

The gui version of ICM also has a multiple alignment viewer with dynamic coloring according to
conservation tables CONSENSUS and CONSENSUSCOLOR. It will automatically show secondary

structure and other features.

The ICM alignment functions and commands are summarized in the alignment section.

Evolutionary trees, 2d and 3d sequence clustering

Relationships between sequences can be presented in three
forms:

as evolutionary trees (ICM uses the
neighbor-joining method for tree construction);

•

as 2D distribution of sequences using the two main
principal axes (use plot2Dseq macro);

•

as 3D distribution. This can be analyzed in stereo
using controls of molecular graphics (use ds3D
macro: ds3D Distance(alig)
Name(alig)).

•

Sensitive Sequence Similarity Search, ZEGA

Search your sequence (interactively or in batch) through any database and generate a list of possible
homologs which are sorted and evaluated by probability of structural significance. The ZEGA alignment
(full dynamic programming with zero end gaps) is used for each comparison and an empirical probability
function described in JMB,1997 is used to assign a P-value to each hit. This search may give you more
homologs that a BLAST search! The output may presented in a linked table form:

Table of hits

NA1 NA2 ID SC pP DE

Fyn 1nyf_mNo 100. 62.81 20.94 fyn
... lines skipped
Eps8 1tud_m17 21. 17.04 4.17 alpha-spectrin
Eps8 1fyn_a23 22.6 17.02 4.16 phosphotransferase fyn

14 Sequence analysis

Eps8 1efn_a25 22. 16.64 4.11 fyn tyrosine kinase
Eps8 1hsq_mNo 24.2 16.87 4.1 phospholipase c-gamma (sh3 domain)

3D plots of functions

Take a matrix and represent it in 3D in a variety
of forms. View it in stereo, color, label, transform
with the mouse. Example:

 read matrix s_icmhome + "def"
 make grob def solid color
 display

Modules of ICM

ICM is distributed in the following packages:

ICM-browser and ICM-browser-pro (distributed from a single package)•
ICM-chemist and ICM-chemist-pro (distributed from a single package)•
ICM-pro with options including bioinformatics, Poisson electrostatics, chemistry and
cheminformatics, homology modeling, docking, virtual ligand screening (VLS).

•

ICM is distributed for the following three main platforms:

Windows•
Linux and Unix•
Macintosh•

There is a full ICM file compatibility between the platform. Also, the appearence of the GUI is identical.
ICM command language contains around one hundred commands and one thousand functions operating on
20 different types of objects.

The modules have the following features: ICM-main

shell for molecules, numbers, strings, vectors, matrices, tables, sequences, alignments, profiles, 3D
maps, 3D graphical objects, 2D chemical tables/spreadsheets, images

•

ICM-language and macros•
graphics, stereo•
imaging and vectorized postscript•
animation and movies•
mathematics, statistics, plotting•
presentation of the results in html format•
user-defined and automated interpretation of web links•
HTML-form-output interpretation•
pairwise and multiple sequence alignments, evolutionary trees, clustering•
secondary structure prediction and assignment, property profiles, pattern searching•
superpositions, structural alignment, Ramachandran plots•
protein quality check•
analytical molecular surface•
calculations of surface areas and volumes•
cavity analysis•
symmetry operations, access to 230 space groups•
database fragment search•
identification of common substructures in PDB•
read pdb, mol2, csd, build from sequence•
energy, solvation, MIMEL, side-chain entropies, soft van der Waals, tethers, distance and angular
restraints

•

local minimization•
ab initio peptide structure prediction by the Biased Probability Monte Carlo method•
loop simulations•

Sequence analysis 15

side-chain placement•

ICM-REBEL (electrostatics)

electrostatic free energy calculated by the boundary element method•
coloring molecular surface by electrostatic potential•
binding energy (electrostatic solvation component)•
maps of electrostatic potential and its isopotential contours•

ICM-docking

indexing of chemical databases in SD, mol2 and csd format•
searching and extracting from the indexed databases•
fast grid potentials•
scripts for flexible ligand docking•
scripts for protein-protein docking•
2D (SMILES) to 3D conversion, type and charge assignment, mmff geometry optimization,
low-energy rotamer generation

•

refinement in full atom representation•

ICM chemistry (also, see here)

scripting access to the internal chemical spreadsheets and external chemical databases in MySQL
(via molcart) and SQL lite.

•

Various operations on chemical tables (see below)•
integration with the docking engine and interactive ligand editing•

Operations on chemical tables:

Calculate various properties and descriptors from 2D chemical table•
Standardize chemical structure (change ambiguous depictions of some functional groups to a
standard form according to user defined tables)

•

Build QSAR type prediction models from a chemical spreadsheet and apply those models to new
chemical tables

•

Convert Smiles to 2D and the opposite operation•
Generate 2D Depiction from a 3D or 0D chemical•
Convert a 2D chemical to 3D•
Generate 3D Conformers•
Generate Tautomers•
Generate Stereoisomers, assign and manipulate stereo centers•
Align/Color By 2D Scaffold•
Cluster chemicals by either fingerprint similarity or external distance matrices•
Compare two chemical sets for common elements•
Sort a table and select duplicate rows in a table•
Create/Modify Markush objects•
Enumerate a combinatorial chemical library from scaffold and R-groups•
R-Group Decomposition of a chemical spreadsheet•
Enumerate a chemical library by reaction(s) and reactants•
Various forms of multiple chemical superposition (both 2D and 3D)•

ICM-bioinformatics

fast comparison and redundancy removal of millions of genomic or protein sequences•
multiple EST clustering, alignment and consensus derivation•
database indexing and manipulations•
functions to evaluate sequence-structure similarity•
scripts to recognize remote similarities in the protein sequence and PDB databases•
search a pattern through a database•
searching profiles and patterns from the Prosite database through a sequence•
HTML representation of the search results with interpretation of links•
interactive editor of sequence-structure alignment•
automated building of models by homology with loop sampling and side-chain placement (fast
homology model building combined with the database loop search is a separate module which is
ICM Homology).

•

16 Modules of ICM

ICM-Homology

sequence-structure alignment (threading)•
ultra-fast automated homology model building with a database loop search•
loop modeling and refinement, side-chain placement•
surface analysis•

As a method for structure prediction, ICM offers a new efficient way of global energy optimization and
versatile modeling operations on arbitrarily fixed multimolecular systems. It is aimed at predicting large
structural rearrangements in biopolymers. The ICM-method uses a generalized description of biomolecular
structures in which bond lengths, bond angles, torsion and phase angles are considered as independent
variables. Any subset of those variables can be fixed. Rigid bodies formed after exclusion of some
variables (i.e. all bond lengths, bond angles and phase angles, or all the variables in a protein domain, etc.)
can be treated efficiently in energy calculations, since no interactions within a rigid body are calculated.
Analytical energy derivatives are calculated to allow fast local minimization. To allow large scale
conformational sampling and powerful molecular manipulations ICM employs a family of new global
optimization techniques such as: Biased Probability Monte Carlo (Abagyan and Totrov, 1994),
pseudo-Brownian docking method (Abagyan, Totrov and Kuznetsov, 1994) and local
deformation loop movements (Abagyan and Mazur, 1989).
A set of ECEPP/3 energy terms is complemented with the parameters for rare atoms and atom types, as
well as the solvation energy terms, electrostatic polarization energy and side-chain entropic effects (
Abagyan and Totrov, 1994), making the total calculated energy a more realistic approximation of
the true free energy. The MMFF94 force field has also been implemented. Powerful molecular graphics,
the ICM-command language, and a set of structure manipulation tools and penalty functions (such as
multidimensional variable restraints, tethers, distance restraints) allow the user to address a wide variety of
problems concerning biomolecular structures.

Notational conventions
The following notational and typographical conventions are used throughout the manual.

Bold. Command names may appear in bold in syntax descriptions. (e.g. montecarlo). Type them
as they appear in the text.

•

Typewriter font is used for command words, examples and ICM-shell prompts. This text can
also be copied into the shell.

•

Italic font is used for command or function arguments which should be replaced with actual
values. For example, if you see /whatever/your/ICM/directory/ and your ICM directory actually is
/usr/pub/icm the latter is what you should actually type. Short prefixes shown in parentheses
may be used to specify argument type: integer (i), real (r), string (s), logical (l),
preference (p), iarray (I), rarray (R), sarray (S), parray (P), date array (e),
parray of chemical molecules (X), matrix (M), sequence (seq), profile (prf),
alignment (ali), map (m), graphics object, or grob (g), structure factor
(sf), atom selection (as), residue selection (rs), molecule selection
(ms), object selection (os), variable selection, e.g. a subset of torsion angles,
(vs), and table (T). chemical table (X). These prefixes are also used to construct formal
argument names for macros. For example, I_Color would mean an integer array with color
information, or s_ObjName would mean a string variable or constant (e.g. "crn") specifying the
object name.

•

Optional arguments appear in square brackets [].•
Braces { } are used for mutually exclusive groups or arguments. For example: set charge as {
r_Charge | add r_Increment } means either set charge as r_Charge or set charge as add
r_Increment

•

The default values in ICM macros are shown in parenthesis and in typewriter font:
icmPocketFinder as_receptorMol r_threshold (3.) l_display (yes)

•

Sometimes the dimension of an array is shown after the underscore symbol, e.g. R_3xyz, means that this is
a 3-membered array.

Common abbreviations
In addition to the abbreviated ICM-shell-objects prefixes (see above), abbreviations may be used for energy
terms, and some other frequently used words.

abbr. description
as_ atom selection
ali alignment

Notational conventions 17

conf conformation
cn distance restraints
grad gradient
ey energy
hb hydrogen bonds
ls list
ms_ molecular selection
MC, mc montecarlo
MB Mouse Button
mn maximal number of items
n number of items
os_ object selection
re, res residue
rs_ residue selection
rs variable restraint
seq sequence
to torsion
tz tether
ty type
va, var variable internal coordinate in a molecule (torsions, phase angles, planar angles, bond lengths).
vw van der Waals
wt weight
X_ array of 0D,2D or 3D chemicals

It is convenient to declare these abbreviations as aliases to the corresponding full words in the _startup
file for fast typing. For example:

 ls seq

instead of

 list sequence

Getting started
Start the GUI (Graphics User Interface) version of ICM by typing icm -g or icm -G and hitting
RETURN. This executable will look the $ICMHOME shell variable. The commands of the GUI menu will
be taken from $ICMHOME/icm.gui file. Feel free to change it. The GUI is meant to be self-explanatory.
In this manual we will mostly focus on the shell commands and function, since in many cases the GUI
gives you only limited subset of possibilities.
ICM-shell

ICM-shell is a basic interface between a user and the ICM-program. The shell can be used from the GUI
version or directly. This is a powerful and flexible environment for a multitude of versatile tasks ranging
from mathematics and statistics to very specialized molecular modeling tasks.
Start ICM by typing:

 icm

Make sure that your .cshrc login file contains

 setenv ICMHOME /whatever/your/ICM/directory/is/

Do not forget the slash at the end. It is also useful to add your $ICMHOME directory to your $path since
there are some ICM related shell scripts and utilities which you may want to access.
You will see the ICM-prompt inviting you to type a command. The first thing to know is how to get help.
You may just type help and use / whatever to find what you want, or use help commands or help
functions to find out about the syntax. Now type:

 aa=2.4

18 Common abbreviations

You have just created a new ICM-shell variable aa and assigned a value of 2.4 to it. You can create a
variable with a name which is not already in use in the ICM-shell, does not contain space or delimiters like
".","," and starts from a letter (e.g. 1aag is an illegal name, except for sequences). Let us go on:

 bb=2.*aa

Now you have created another ICM-shell variable bb and its value is probably 4.8. Find it out by typing:

 print " bb=", bb

or any of these commands:

 list "b*"
 list integers
 show bb

The next step would be to type a conditional expression like:

 if (bb != 4.8) print "something went wrong"

or something even more elaborate:

 if (bb != 4.8) then
 print "something went wrong"
 else
 print "It really works"
 endif

You can always start a for-loop such as:

 cc={"sushi","sashimi","negi maki","toro","period."}
 for i=1,Nof(cc)
Nof returns the number of elements.
Index i runs from 1 to 5
 print "*** I just like to eat ",cc[i]
 endfor

Notice that anything after a pound sign # in ICM scripts is a comment.
We have just played with a real variable bb and string array cc . They had their unique names and we
could create, read, write, delete and rename them.
ICM-shell objects
Furthermore, the ICM-shell can handle many other different types too, namely, it may contain in its
memory entities of 16 different types, such as

integer , (e.g. a=10, b= -3)•
real , (e.g. c = -3.14)•
string , (e.g. d = "ICM rules")•
logical , (e.g. e = (2 > 43); f = yes)•
preference , (i.e. fixed multiple choices, try show wireStyle)•
iarray , (i.e. integer arrays, g={-2,3,-1})•
rarray , (i.e. real arrays, h={ -2.3, 3.12, -1.})•
sarray , (i.e. string arrays, i={"mek","yerku","erek"})•
parray, including array of 0D,2D or 3D chemicals, e.g. chm =
Chemical({"CC","CC(=O)O","C1CC1"})

•

matrix , (read from a disk file, e.g. read matrix "def.mat")•
sequence , (i.e. amino acid or nucleotide sequences, e.g. a=Sequence("ASDQWE")•
alignment , (i.e. pairwise or multiple sequence alignments, read from a file)•
profile , (i.e. protein sequence profiles)•
map , (i.e. density functions defined on the 3D grid)•
grob (abbreviation for GRaphic OBject, which is different from molecular graphics objects, and
contains dots, lines and solid surfaces; it can be a contoured electron density, 3D plot, an arrow,
etc)

•

atomic/molecular objects and related selections of atoms (a_//ca,c,n)
residues (a_/2:15) molecules (a_1.b,c/) objects (a_1,2.) and, finally ..,

•

table , or spreadsheet. Several arrays are linked together in a table. Table can also have a header
with some additional data fields. Tables are essentially simple databases which can be
manipulated with, sorted and searched with ICM commands.

•

The more complicated objects, like arrays, sequences, alignments, maps etc., can be read from a disk file
(e.g. read sequence "a.seq") or created by an ICM command or function (e.g.

ICM-shell 19

a=Sequence("ACFASDTRSEEDFFF") or make sequence a_1.1)
Atomic objects are usually specified by an atom, residue, molecule or object selection which are
collectively referred to as selections.
All of the listed entities have their unique names in the ICM-shell and can be read, renamed (e.g.
rename myFactors bbb), deleted (e.g. delete myFactors aaa), written to a file
with a standard type-specific extension (e.g. write aaa "surf" will create file surf.gro , the
extension type depends on the object), shown, often printed and displayed graphically.
A number of ICM-variables have reserved names and are used by the program. For example, the mncalls
variable always describes the number of molecular energy evaluations during a minimization, s_pdbDir
is the path to your pdb files, etc. You may customize some of those ICM-shell variables by redefining them
in the system-wide _startup file, and $HOME/.icm/user_startup.icm file. The standard
_startup file reads icm.ini file which contains many standard directory and parameter definitions,
e.g.

 read all s_icmhome+"icm.ini" # initialize icm variables

Important: be careful when negative numbers appear in the command line. If not separated from the
previous numeric argument by a comma, they will be interpreted by ICM-shell as an expression, i.e. the
two arguments will simply be replaced by their difference. For example, the command

 display string "I like crambin" -0.9 -0.3

is wrong, a comma is needed, otherwise -0.9 -0.3 will be substituted by -1.2. This command will
place the string in a point with screen coordinates X=-1.2 and Y=0.0 (the default), not in X=-0.9 and
Y=-0.3 as might be expected. The safest way should be to use commas as separators in the argument list in
the command line, like the following:

 display string "I like crambin" -0.9 , -0.3

is correct, the two arguments are separated by comma
Now you can use the mouse to rotate and translate molecules and strings. The left mouse button is
associated with rotation, the middle mouse button is translation and the right mouse button clicks are used
for drop down menus in GUI and labeling (double click is a residue label). A more detailed list of
graphics controls is given below.
As far as the keyboard commands and prompting, try to use the arrow keys for invoking previous
commands and TAB for prompting (e.g. atom TAB) to see the available commands and functions.

The first steps

Your first ICM commands may be the following:

 read pdb "1crn" # check pdbDirStyle variable for PDB access
 display ribbon

or simply

 nice "1est"

You can also:

 read mol s_icmhome + "ex_mol" # or
 read mol2 s_icmhome + "ex_mol2" # or

The second way to create a molecular object is building the extended chain given the amino-acid sequence.
The simplest way to build a short peptide is to use the build string command. Type

 build string "nter ala his leu tyr cooh" # or
 build string "AHLY;AGGAR" # to build two molecules
 build string "ra rg ru; ra rc ru" # to build two rna chains

In a more complex case create a file, say mymol.se, .se being the standard extension for the object
sequence files. The file should contain the names of molecules (field ml) and their sequence (field se) and
may look like this:

ml mol1
se nter ala gly his ser trp cooh

20 The first steps

ml mol2
se hoh
ml mol3
se hoh

Type:

 build "mymol"

to build the object. Now you can display the three molecular objects you have just loaded, i.e. crambin, the
two peptides. We will use the cpk and the xstick graphics representations.

 display a_2. # a_2. means 'the second object'
 display cpk a_1./2:10 # a_.. means 'residues 2:10 of the first object'
 display xstick a_1./16:18

You can also replace residues with the modify command:

 modify a_2./his "tyr"

Let us clear the scene and start doing some more fun things:

 delete a_*. # a_*. selects all the objects
 build "mymol"
 display # by default displays everything
 set vrestraint a_/* # this command will increase the efficiency
 montecarlo

Of course, there is a more elaborate possible setup for a montecarlo run (see _folding script) and
graphics should not be used for a real run. However, the above example is pretty much what you need to do
to run the Biased Probability Monte Carlo Minimization to find the global minimum which models the
solution structure of this peptide.
Now let us make a quick tour into multiple sequence alignments. First, get your sequence file (most formats
will be accepted). The simplest default file format (then you do not need format type specs like: msf, pir,
etc) is the fasta format (angular bracket and sequence name followed by the sequence)

> seq1
ASDFREWWDYIEQ
> seq2
SDRTYIEQWWDCVN

There are some example multiple sequence files in the ICM-directory. Let us do the following:

 read sequences s_icmhome+"sh3" # example sh3.seq file
 group sequence "*" sh3ali
 show sequences alignments
 align sh3ali # redo the multiple sequence alignment
 unix gs sh3ali.eps # gs is a PostScript previewer
 show Align(Fyn, Eps8) # make a pairwise alignment

If you want to go directly to more elaborate sessions and scripts, or have a "How can I ..." question, you
may hop to the User's Guide section.

ICM Scripting Tutorials
If you are interested in learning more about the ICM command line language please download the Scripting
Tutorials (the instructions are below). The tutorials contain a comprehensive guide to ICM scripting
including a guide to the language, best practices, and worked examples. The interactive hyperlinked text in
the icb files help you learn ICM scripting efficiently. Tutorials were prepared by Eugene Raush (Principal
Software Developer, MolSoft LLC).

Instructions
Please download (right click and Save Link As) the turorials.•
Unzip the file.•
Save the unzipped folder to a directory.•
Open the ICM graphical user interface and set the working directory to the location where you
saved the files. To do this go to Tools menu and choose the option "Change Working
Directory" and then browse for the directory.

•

ICM Scripting Tutorials 21

Go to File/Open and open one of the .icb files listed below and follow the links.•
Follow the html text in the icb files and click on the interactive links.•
Expand the size of the command line window so you can see the commands and the output.•

Guide to the Tutorials
Scripting_Basics.icb

ICM Scripting Language Basics - Topics include:

ICM Command Line•
Basic Data Types•
Control Structures•
Commands and Functions•

Scripting_Workshop_MolObjects.icb

Molecular Objects - Topics include:

Selections•
Internal Variable Selections•
Sequences•
Alignments•
Grobs•

Scripting_Workshop_ICM_Scripts.icb

ICM Scripts - Topics include:

Command line arguments•
Working with large SD files and piping•
SQL interface to relational databases•
Macros•

Scripting_Workshop_Tables.icb

Working with Tables and Chemical Spreadsheets - Topics include:

Tables introduction•
Table creation•
Collection(hash table)•
Deletion of columns and rows•
Filtering•
Columns with formulas•
Assigning custom actions to the table cells•
Grouping•
Plotting•
Chemical structures in tables•
Substructure and Similarity Search•
Annotate by matching fragments•
Find/Replace chemical groups•
Perform standardisation•
Clustering Trees•
Chemical objects vs 3D molecular objects•

RegExpr.icb

Regular Expressions for Text Processing - Topics include:

Simple expressions•
Repetitions and back-references•
Useful shortcuts•
Common tasks in the text processing•
Practical example: Conversion of DrugBank text format to SDF•

22 Instructions

Scripting_Workshop_GUI_Programming.icb

Creating your own GUI elements - Topics include:

Dialog definition syntax•
Layout•
Referencing to the input values from the ICM command•
Ways to add a dialog to the interface•
Adding a link in the html page•
New top menu item•
Adding a button•
Askg() function•

Scripting_Workshop_ActiveICM.icb

ActiveICM enables you to display fully interactive 3D objects in PowerPoint and Web. - Topics include:

Client side•
GET and POST methods•
Server side•

Scripting_Workshop_GUI_Programming.icb 23

24 Scripting_Workshop_ActiveICM.icb

Reference Guide
ICM command line options

Option Description
-a arg_string initialize s_icmargs string with arg_string
-b inhibit Buffered output
-c clean: do not save _seslog

-e 'commands' execute semi-colon separated icm commands and
quit

-g [menuFile] start GUI menu bar, using menu file
[default=icm.gui]

-G [menuFile] start GUI menu and keep the original terminal
window

-i Input Icb file from the stdin pIpe
-n do Not execute _startup file

-ng no-gui: open in shell only, do start GUI/graphics
after reading the file

-R[] # Redirect standard text/info output into stderr
to enable piping binary content

-s Silent mode (l_warn=no l_commands=no l_info=no
l_confirm=no)

-p set path for ICMHOME, e.g. -p/opt/icm/

-w web cgi mode: combination of -p and -s, e.g.
-w/opt/icm/

-d(or -display) address sets/redirects the X display (default is $DISPLAY)

-24 enforce high quality 24-bit image mode at the
expense of double buffering

-B[max_beeps] no more than max_beeps on errors (default=300)

-X report the computer identification number for a
node-locked license GUI options:

-style={motif windows platinum cde} sets the GUI style
-session=session restores the earlier session

-geometry WxH+X+Y sets the client geometry of the main widget, e.g.
-geometry 200x200+150+700

-fn or -font font defines the GUI font
-bg or -background color sets the default background color
-fg or -foreground color sets the default foreground color
-btn or -button color sets the default button color
-name name sets the GUI name
-title title sets the title (caption)
-visual TrueColor forces to use a TrueColor visual on an 8-bit display
-ncols count limits the number of colors on a 8-bit display

-cmap causes to install a private color map on an 8-bit
display

Examples:

 icm -g # run in the interactive gui mode
 icm -g -p/home/yoda/icmd/ # temp path to ICMHOME
 icm 1crn.pdb 2ins.pdb # opened these two files
 icm script.icm > script.out # runb
 icm -G # keep the terminal window separate
 icm -a "4.2 3" # the string copied into s_icmargs variable
 icm -s # no startup, just ICM in a quiet mode
 icm -24 # if you intend to save high-resolution images
 icm <<EOF
#command1 # ICM reads from standard input
#command2
EOF
 "print 123\nprint 432" | icm -s

Reference Guide 25

Command line editing
(cursor is in the text window).

Operation Shortcut Key
command word completion/prompting TAB
up-history UP arrow
down-history DOWN arrow
forward-char RIGHT arrow
backward-char LEFT arrow
beginning-of-line CTRL+A
delete-char CTRL+D
end-of-line CTRL+E
backward-delete-char Backspace or CTRL F+H
kill-to-line-end CTRL+K
insert-overstrike toggle CTRL+O
paste CTRL+P
delete/copy-whole-line CTRL+U
delete/copy-word CTRL+W
yank (identical to paste) CTRL+Y

Use the TAB key when you do not know what to do or to avoid unnecessary typing as well as probable
typos in long names. This prompting is very convenient and is consistent with the tcsh UNIX shell. It will
not only prompt you for possible completions, but also prompt you for available files in the read
command (hit TAB after the double quote mark) and available selection of items in preference .
Examples:

 show Ic TAB # completes function name IcmSequence()
 read pdb "TAB # gives you all local *.pdb *.brk files
 read sequence "1a TAB # lists 1a*.seq files

Graphics controls
The rough picture is simple: rotate with the left mouse button, translate, drag, crop, and zoom (drag along
the left window margin) with the middle button, and select/pop with the right button. However these are
only the defaults which can be customized.
The default shortcut keys are stored in the icm.clr file. Therefore the mapping of keys/mouse buttons to
particular graphics operations is flexible and can be easily redefined. The GUI controls and the popup
menu are additional to the older shortcut keys listed here. The following shortcut keys to speed up
operations in the graphics window (see the quick graphics reference guide) are defined by default. If some
of these definitions are not working, check your icm.clr file in the $ICMHOME directory and modify the
key/mouse-operation mapping to your liking.

Quick graphics reference guide

26 ICM command line options

It is necessary to have the cursor in the graphics window. For some operations you may need to move
cursor in a specified area (e.g. left margin) of the window. (Note for Windows 95/Windows NT version's
users: if you use a two-button mouse hold the left button and the SPACE key instead of the middle mouse
button (see picture-prompt for two-button mouse). Some controls use only a margin on the screen (e.g.
Bottom5 means the bottom 5% of the graphics viewing area).
Note: if your SGI hardware stereo does not work properly you may need to install IRIX6.4 patches 2448,
2771 and 2843.

OPERATION DESCRIPTION KEYS

ROTATE

SHIFT key enforces
global
rotation

simple
LeftMB (MB
stands for Mouse
Button)

continuous Shift-Bottom5-
LeftMB

Z-axis clockwise
LeftMB at top
margin (or ALT
+Z)

Z-axis
counterclockwise

LeftMB at top
margin or CTRL
+Z

individual torsion
angle in ICM-object

CTRL (or
CTRL+SHIFT)
LeftMB on
reference atom

TRANSLATE

SHIFT key enforces
global
translation

GRAPHICS.resLabelDrag
controls residue
label dragging

XY-plane
(dragging) MiddleMB

drag atom in
non-ICM object

CTRL LeftMB at
the dragged atom

Z-axis MiddleMB at right
margin

Graphics controls 27

ZOOM
zoom in

MiddleMB at left
margin or SHIFT
MiddleMB up

zoom out
MiddleMB at left
margin or SHIFT
MiddleMB down

CLIPPING PLANES

front plane CTRL MiddleMB

back plane ALT MiddleMB or
Right5-MiddleMB

slice/slab (move
both planes)

CTRL+ALT
MiddleMB

unclip CTRL+U

LABELING

label atom or grob RightMB-click

label residue double
RightMB-click

paste atom's/grob's
name to command
line

CTRL-SHIFT
RightMB (or under
Gui: RightMB on
atom and release
on 1st item)

paste residue name
to the command line

CTRL
double-RightMB
(GUI: RightMB on
residue, popup
menu and release
on 1st item. Use
the residue
selection level, R)

set 3D cursor to the
residue (move with
arrows)

CTRL-SHIFT
double RightMB

CONNECT for
independent movement of
molecule(s) SELECT
GROB(S) for changing
size or color

disconnect/unselect
everything

ESC or double
RightMB-click,
cursor in any
empty area of the
screen

connect to molecule
or grob

CTRL+ALT
RightMB-click on
atom or vertex

connect to more
molecule(s)/grob(s)

CTRL+ALT+SHIFT
RightMB-click

select/edit grob double
RightMB-click

add new grob to a
selection

SHIFT double
LeftMB-click on
grob

MODES

side-by-side stereo
on/off CTRL+S

hardware stereo
on/off ALT+S

full screen on/off CTRL+F
perspective view
on/off CTRL+P

fog (depth
cueing) on/off CTRL+D

change
resLabelStyle
preference

CTRL+L

change
resLabelStyle
preference

CTRL+A

28 Graphics controls

change background
color

CTRL+E /
CTRL+Q

change "skin" color
of the selected
grob(s)

CTRL+E /
CTRL+Q

change "wire" color
of the selected
grobs

ALT+E / ALT+Q

change display
modes of the
selected grobs

CTRL+X

MISCELLANEOUS

delete string label
pointed by the
cursor

BACKSPACE

gui (graphical user
interface) CTRL+G

drag the box MiddleMB-click at
boxCorner

Editing pairwise sequence-structure alignments
ICM has a powerful editor for pairwise and multiple alignments. ICM alignment editor robust and safe. It
protects you from unintended changes in the alignment. To edit an alignment one only needs to select a
block next to a gap and move it with arrows. In total, there are four operations one might need:

select a block with one or several sequences to be moved (press Ctrl to add blocks). Important:
since you can only move the selection to the gapped space , the moving front of the selection
must be next to the gaps.

•

(optional) create space on both sides around a vertical section of the alignment•
use the keyboard arrows to move the selected block with respect to the other sequences•
squeeze out the excessive gaps (an item in the alignment popup menu)•

OPERATION KEYS

set a vertical selection for ALL sequences in the alignment Double-Click

add white space by hitting the Space bar SpaceBar

remove white space Backspace

select a sub-block for shifting Drag Left-Mouse-Button

shift the selected block next to a gapped area Right and Left Arrows

Constants
The values of most of the ICM-shell objects may also be represented explicitly in the ICM-shell as so
called "constants" (i.e. in the myFactors={1.2, -4., 5.88} line, myFactors is an ICM-shell
variable of the rarray type, while {1.2, -4., 5.88} is an "rarray" constant. The following constants
are defined in the ICM-shell:

integers: -9999 12•
reals: 12.0 -0.00003 2.•
logicals: yes no•
strings: "I see M", "Backslash (\\) and quote (\")" "line1\nline2" or

newlines are allowed between triple quotes, e.g.
a = """

•

Editing pairwise sequence-structure alignments 29

 A text with lines
is also a string
"""

Escape sequences which can be used inside strings:

\a - bell
\b - backspace
\f - formfeed
\n - newline
\r - carriage return
\t - horizontal tab
\v - vertical tab
\\ - backslash
\" - double quote
integer arrays: {2, -1, 6, 0} {-8, -1, 2} The comma is compulsory before a
negative number, it can be skipped otherwise.

•

real array: { -1.6 , 2.150 3., -160.} Real arrays can also contain "ND" (Not
Defined) and other special values. The following special values:

ND (not defined)♦
>r_value♦
<r_value♦
INF : infinity♦
-INF : infinity♦

To compare an array with special value use the Toreal function:

read table csv "x_with_spec_values.csv" name="t"
t.A == Toreal({"ND"})

Option number in read table csv will convert empty fields into NDHowever not all
functions support them, be careful. Example:

 show Toreal({"ND"}
#
here we are changing 0. values to NDs
 group table t {1. 0. 2. 0.}
 idx = Index(t.A == 0.0)
 t.A[idx] = Toreal(Sarray(Nof(idx), "ND"))

•

string arrays: {"do","re","mi","fa","sol"} {"\n(newline), \t
(tab)","\a (bell)"}

•

selections (find a detailed description below):•

 a_hiv?. a_1,2. a_*. # objects
 a_h*.a a_m1 a_*.!w2,w15,z* # molecules
 a_1.*/2:15,18:26 a_/18,his* # residues
 a_//ca,c,n a_1.c a_/2:4/!h* # atoms
 v_//phi,psi V_2//?vt* # variables

Subsets and Index Expressions
one can refer to an element or a subset of ten kinds of ICM-shell variables:

Variable type Expression Result type Example

string string[i] string lastChar=str[Length(str)]

string[i1:i2] string resName=pdbStr[18:21]

iarray
iarray[i] integer CurrSize=sizes[i]

iarray[i1:i2] iarray frag=list[4:nitems]

iarray[I_] iarray sublist=list[{1,3,5}]

rarray
rarray[i] real the=same[i]

30 Constants

rarray[i1:i2] rarray all=as[for:iarr]

rarray[I_] rarray Part=R1[{1,2,3}]

sarray
sarray[i] string best=menu[ibest]

sarray[i1:i2] sarray fish=list[4:8]

sarray[I_] sarray some=all[{1,2,3}]

matrix

matrix[i1,i2] real Element=M[4,5]

matrix[i1] rarray atomCaVec=CoordMatr[15]

matrix[i1,i2:i3] rarray thirdRow=M[3,1:5]

matrix[i1,?] rarray thirdRow=M[3,?]

matrix[i1:i2,i3] rarray firstColumn=mm[1:3,1]

matrix[?,i3] rarray firstColumn=mm[?,1]

matrix[i1:i2,i3:i4] matrix upperSqr=rot[1:2,1:2]

sequence sequence[i] string amino4=bpti[4]

sequence[i1:i2] sequence domain=seq[139:302]

alignment
alignment[i] alignment column4=globins[4]

alignment[i1,i2] string AminoAcIn2ndSeq=globins[4,2]

alignment[i1:i2] alignment motif=EFhand[15:27]

profile profile[i] profile His=prof[18:18]

profile[i1:i2] profile motif=prf[14:35]

selection selection[i] selection ca18=ca[18]

selection[i1:i2] selection frag=ca[14:35]

table table[i] table show t[3]

table[i1:i2] table delete t[3:5]

Important note. When both lower and upper limits are explicitly specified, even if they are equal (e.g. list
[3:3]), the type of the subset object remains the same. If only one element is specified, the rank may be
reduced. The upper limit may be larger than the actual limit (e.g. t[3:9999]). You may also use 0 instead of
the last element number (e.g. t[3:0]).

Subsets and Index Expressions 31

Molecule intro

Molecules are the main inhabitants
of the ICM shell. The shell can
contain many objects, each of which
can be a soup (this expression
belongs to my friend Gert Vriend)
of separate molecules. Molecules, in
turn contain residues and atoms.
ICM can handle both raw objects,
as they come from a PDB file or a
mol-file, and a fully prepared for
molecular modeling "ICM"-objects.

The non-ICM objects can be visualized, but they need to be converted into ICM-objects to perform the
most interesting modeling operations. To specify the subsets of objects, molecules, residues, atoms and
internal variables, you need to learn the language of molecular selections.
A quick preview of the selection language, using the picture above as an example:

 display a_2. cpk # object selection (the second object)
 display a_1.1 ribbon green # molecule 1 from object 1
 display a_1.2/his xstick # residue his12 shown as balls and sticks
 color a_/1.2/12/n* xstick blue # atoms: color nitrogens in blue

For an in-depth description of selections, read the next section.

Selections
Let us imagine that we decided to compare two structures deposited in the PDB. We will read both entries
in the ICM shell, and define the following levels or organization. Each entry will form an object, each
object will contain one or several molecules, protein molecules will naturally contain amino acid residues
and residues will consist of atoms. Now, in the superimpose command, we will need to specify, or select,
the molecules, residues or atoms which should be superimposed. The ICM shell language has a
flexible way of selecting subsets of atoms, amino-acid residues, molecules, objects, as well as torsion
angles and other internal geometrical parameters of molecules. Most of the ICM commands and functions
dealing with molecules, for example, display, delete, minimize, etc., will operate on an arbitrary selection.
What does a selection look like? For example, selection a_2./2:14/c* selects carbon atoms of residues
from 2 to 14 of the second object. The general syntax of a selection is the following:
 prefix _ [object(s) .] molecule(s) / residue(s) / atom(s) or variable(s)
The object section including the dot (e.g. 1crn.) may be omitted. In this case the selection will be
performed in the current object.
There can be as many as five sections separated by _ . / and /,
Examples:

 a_2ins.a,b/lys,arg/ca,cb,n* # atom selection, '*' - any string
 a_2ins.a,b/2:10/n,ca,c # atom selection
 v_crn./lys,arg/phi,PSI # variable selection

(Note use of PSI torsion in the last example.)
Storing selections in named variables.
Selections can be assigned to a variable (e.g. x = a_//c*) and can be combined in an expression by
logical and (&) or logical or (|), e.g. (a_//n* & a_//ca).

Selection Types

Three prefix types: a_ v_ and V_ . The Prefix defines one of the three selection types:

atoms, residues, molecules and objects (a_..)•
free variables (v_..)•
all variables (V_..)•

32 Molecule intro

The a_ selection is the most popular and selects atoms, residues, molecules or objects. Therefore, there
are four atom selection subtypes which are abbreviated as follows:

abbr. selection name example
os_ object selection a_ ; a_1. ; a_1crn. ; a_*.
ms_ molecule selection a_1.2 ; a_a,b ; a_*.*
rs_ residue selection a_/3:9 ; a_/* ; a_/"GKS"
as_ atom selection a_1.2//ca,c,n ; a_//c*
Two additional types of selections let you select amongst the free internal coordinates or all internal
coordinates (both free and fixed). These selections are widely used in commands and functions related to
energy minimization and sampling:
abbr. selection name example
vs_ selection from free internal variable --{v_ ; v_1. ; v_1.2//x* ; v_2//?vt*}
Vs_ selection from all internal coordinates --{V_ ; V_1. ; V_1crn.//!phi,psi,omg}

A selection can also be assigned to a named variable:
Example:

 aa = a_//ca,c,n # the backbone
 show aa

The object and molecule sections are separated by a period, all other sections are separated by slashes.
Inside each section, arguments in a list are separated by comma (,) while ranges are separated by colon (
from:to).

Selection levels

There are four principal levels of selection: object selection, molecular selection, residue selection and
atom or variable selection. The level is defined by the "lowest" section explicitly specified in a selection
(e.g. a_1.1/2:4 is a residue level selection, while a_//ca is an atom selection). These selections are
referred to as os_ ms_ rs_ as_ or vs_ , respectively. If selection level is not important or the level is the
lowest one (atoms or variables), selections are referred to as as_ or vs_.
The selection level of the interactive graphics selections is controlled by the
GRAPHICS.selectionLevel preference. To change it from the command line, assign this variable to
an appropriate level, e.g. GRAPHICS.selectionLevel="atom" .
Selection levels can be changed from the GUI interface, by changing the selection level
Examples

Examples of different selection levels (note that object and molecule names are arbitrary):

 a_1,3. a_mod*. a_*. a_"*benz?n*". # object selections
 a_3.mol1 a_zinc a_$molNum a_*.* # molecule selections
 a_/3:29,as?,ala a_/* a_*./"VHC?[!W]A" # residue selections
 a//h?,c* a_//T v_//phi,psi # atom or variable selections

For example, a_1,3. is an object selection, and a_/ala is a residue selection.
Each section may contain a negation symbol ! in the beginning. It selects all, but the specified. You can
only use the negation symbol in the first position of a section and the negation will always apply to the
whole section. For example, a_/!ala,gly is right, while a_/ala,!gly is wrong.
If object section together with the separating period is skipped, selection addresses the current
object rather than all objects.

Select by number, range, name or pattern

Matching. Objects, molecules, residues, atoms and variables may be referred to by their names. Objects
and molecules can be additionally referred to by their sequential numbers (e.g. a_1.2). To select by a
numerical name, use backslash before the name, e.g. a_\123 . Metacharacters, such as * ? [], can
also be used for pattern matching (e.g. v_//?vt*).
Full syntax. A complete description of selection syntax for each level is as follows:
Object selection

(a_ obj. or just a_ for the current object):
a_ name .|(a_1crn. , note the dot at the end)
a_ namePattern.|(a_1c?n.)

Selection Types 33

a_ relNumber.|(a_2. means the second object)
a_ num1:num2.|(a_2:5. range from object 2 to
object 5)
a_ the current object, it is a special case.

a_ " commentPattern ". select by pattern matching in the object comment
field.

a_ICM. objects of ICM type (a_!ICM. - non-ICM objects)
a_NMR. objects of NMR type

a_XRAY. objects of XRAY type, see also Select (a_*.
, 'r

a_CATRACE. objects of "Ca-trace" type
a_SLIDE. objects used in slides
Other object types (e.g. "NMR","Fiber", etc.) can be selected or checked with the Type (os_ 2)
function.
Example:

 read object s_icmhome+"all"
 show a_ # the current object
 show a_1,2:3.
 show a_s1?.
 show a_"*Th[iy]o*".//!h* #here we select by comment
 set comment a_ "tag1 tag2 tag3, description"
 show a_"*tag2*".
 show a_"*tag2?tag3*". # use ? for space

Molecule selection

a_obj.mol in specified object(s),
a_mol in the current object or
a_*.mol in any object

by name:
a_s_name e.g. a_m2 or a_1.m2 in the current (a_), or the first (a_1) object, respectively. (Note that
there is no dot at the end). If the name starts with a digit or one of the reserved one-letter types (see
below), add backslash before the digit, e.g. a_\123 , a_\A .
by pattern
a_s_namePattern (a_w* - all water molecules in the current object)
by number(s)
a_number (a_2 , a_3.2,4,7) - relative number of molecule(s)
by range(s)
a_num1:num2 (a_2:5 , a_2:5,10:12) - number range
by chemical formula (F):
a_Fformula1,Fformula2..
the chemical formula must be the same as the one returned by the ICM String(ms_) function without
hydrogens, e.g.

 read pdb "1abe"
 show a_FC505 # selects 2 arabinose molecules
 String(a_2//!h*)
 C5O5

by special symbol for types of molecules:
a_specialSymbol[,specialSymbol2..]

A peptides and proteins•
B molecules included in Biological unit•
C select by Chain, e.g. a_1.Cabc , use underscore ('_') for space.•
H hetatm, usually ligands and water molecules•
Jn1[:n2] number of residues filter, e.g. a_J3:5 3 to 5 residues residues•
K molecules with linked sequence alignment•
L lipids•
M Metals•
N nucleic acids•

34 Object selection

On1[:n2] number of real atoms filter, e.g. a_O3 for more than 3 atoms•
Q molecules which have a seQuence linked to them•
S sugars•
TRACE : molecules marked as "Amino" or "Nucl" with one to two numbers of atoms per residue•
W water including deuterated water (dod)•
U unknown (miscellanea)•

Note that if a molecule name coincides with any of the above characters (i.e. "ACHLMNQRSTUW"), ICM
gives preference to the type selection. To select by molecule name, use backslash (e.g. a_1.\A for chain
named "A")
Examples:

 nice "1dnk" # one peptide, two dna chains and other mols
 a_A # the peptide
 a_N # the two DNA chains
 a_A,N # the peptide and the DNA chains
 rename a_1 "A"
 a_\A # chain NAMED "A"
 read pdb "2ins"
 delete a_W
 read pdb "1e8s"
 show a_TRACE # shows Ca-trace molecules of two proteins and one RNA

Some special cases:

 a_* # all molecules in the current object
 a_a # molecule 'a' in the current object
 a_.a # molecules 'a' in all objects
 a_*.a # the same as a_.a

selecting water molecules from pdb-files by their 'residue-field' number.
Water molecules in PDB files are numbered and the numbers are stored in the residue field. For
consistency, we convert these numbers into residue numbers. At the same time the names of water
molecules are built sequentially like this: w1,w2,w3 . This way one can use both sequential numbering
via molecule names and PDB-file numbering via residue numbers.

 read pdb "1sri"
 show a_w12:w15 # by molecule name, sequential numbering
 show a_w*/719:721 # by original pdb number

converting any selection to molecules with the Mol function
Selection of any level, e.g. atoms, residues, and objects can be converted to molecules with the Mol (
selection) function. Example:

 Mol(Sphere(a_zinc a_1,2 8.)) # Sphere returns atoms

Residue selection

With respect to objects and molecules there are the following possibilities:
a_obj.mol/res complete specification, (e.g. a_*.*/14:19 or a_2.3/ala).
a_mol/res the current object and the specified molecules, (e.g. a_w*/*)
a_/res all molecules of the current object, (e.g. a_/23:25)

Residue field specifications (for all molecules in the current object).
by name:
a_/resName (e.g. a_/his , or a_/\001 - here we had to start with a backslash because the residue name
looked like a number)
by residue name pattern:
a_/resNamePattern (e.g. a_/as? - asn or asp). A useful tip for DNA or RNA selections. Quite often
bases are modified. To select A,T,G,C,U and their modifications, use a_/??a or a_/??t or a_/??g or
a_/??c or a_/??u, respectively.
by residue number(s):
a_/numChar (a_/3 or a_/15A) - PDB residue number may contain additional characters.
by residue range(s):

Molecule selection 35

a_/numChar1:numChar2 (a_/4:15,20:25) - reference residue number range
by amino acid sequence pattern:
a_/"seqPattern" (a_/"G?GTE") - selects the fragment with matching amino acid sequence.
Example selecting all residues preceding prolines (the first expression selects dipeptides with the second
proline, the second one excludes prolines):

 show a_/"?P" & a_/!pro*

by string and integer shell variables use the dollar substitution, e.g.

build string "ASDF"
i=2; j=3; a_/$i:$j
s = "12:13,15:19"
a_/$s/c*

Notice that value substitution for integer and string shell variables without the leading dollar symbol has
been obsoleted.

by special symbols and expressions
by residue type
a_/A - residues of "Amino" type (N- and C-termini have different type) displayed residues

a_/B - barcode residues, see Pattern(rs). E.g. a_1.2/BL2LL . The gap lengths is calculated from the
residue labels, see also the Q selection.

a_/C resConservationCode - selects residues by consensus letter, see below.
a_/D - displayed residues in the ribbon representation or with residue label

a_/DR - displayed residues in the ribbon representation only

a_/DL - displayed residues with residue labels
a_/DD - displayed residues in which either ribbon or some atoms are displayed
a_/F.. selection by site, see below

residues identical to their homology target residues

a_/Q - barcode residues, see the B selection above. e.g. a_1.2/QL2LL . The gap lengths is calculated from
the order of actual residues, the labels are ignored.

by secondary structure

a_/S sec_struct_chars - residues with certain secondary structure (e.g. a_/SH - only helices;
a_/SEH - sheets and helices; a_/S_ - only coil)
terminal residues (like N-terminal, C-terminal, and DNA 5' and 3' termini) a_/T

a_/U - unknown residues not described in ICM residue library
by alignment consensus
a_/C resConservationCode - selects residues according to the consensus of the alignment linked to a
molecule. The symbols can be combined, e.g. a_/CYnh for conserved tyrosines, negatively-charged
residues and hydrophobics. Possible codes:

A , C ... - particular conserved amino acid types (one-letter code)•
X - all absolutely conserved residues•
h - conserved hydrophobic residues (#)•
s - conserved small residues (^)•
p - conserved polar residues (~)•
o - conserved positive residues (+)•
n - conserved negative residues (-)•
a - conserved aromatic residues (%)•
x - not conserved but in the ungapped block (.)•
g - gap in one of the sequences of the alignment (' ')•

(e.g. a_/CXh - selects all identities in the alignment and hydrophobic residues, a_/CACg - all conserved
alanines, cysteins and gapped regions)
by functional features
a_/F[SiteChars] or a_/F"siteID" or a_/Flocal SITE.labelStyle
residue selection by the one-letter site type or the site ID, respectively. Letter F refers to the word feature as

36 Residue selection

in the FT (feature table) field of Swissprot entries. The types along with their one-letter codes are listed in
the glossary site entry. The default string, the a_/F selection, is defined by the SITE.defSelect
string (you may redefine it), which defines important local features such as binding sites as opposed to
domain-type sites such as signal peptides, zinc fingers and other protein domains. The PDB entries do not
comply with the standard SWISSPROT site definitions, such as ACT_SITE BINDING etc., and are
assigned by the user type F (selection a_/FF).
Example:

 nice "1as6"
 show site
 color ribbon a_/F magenta
 show a_/FF
 show a_/F"cu3" # select only site named cu3
 show a_/F"MUTAGEN" # sites so defined in Swissprot
 set site a_1.1 "FT SITE 15 15 My favorite residue" label=2
 show a_/F2 # select by site label display style number

converting selections to residue level: The Res (selection) will convert any selection of higher level or
lower level to the residue level. Example

 a_/SH & a_/pro # a proline in a helix
 Res(Sphere(a_/pro 2.)) # expand to the neighboring residues

Atom selection

(a_//atoms):
by name
a_//name (a_.//ca , ca is a usual name for alpha carbon)
by name pattern
a_//namePattern (a_.//c* for all carbons)
by special symbols and expressions
alternative atom positions in X-ray structures
a_//A alterCharacter - select alternative positions of the specified type (e.g. read pdb "1cbn" ;
show a_//Ab). See also the set comment "A" as_ command. This selection breaks down if an
alternative has the character of one of the elements: Ac,Ag,Al,Am,Ar,As,At,Au . A newer (superior) form
of this selection is a_//:char1char2.. , e.g. a_//c*:ab

a_//A will select all atoms marked as alternatives (both main and secondary alternatives). This selection, in
contrast to the explicit one (e.g. a_//:c) will also select the unmarked alternatives that are recognized as
residues with the first coordinate less than 0.2A away form the same atom of the previous residue.

a_//AS will select only the Secondary alternatives (e.g. color magenta a_//AS . If you deleted
a_//Aa atoms then a_//Ab become the main alternative and the other ones will become secondary. If you
want to delete the primary, do not forget to clear the alternative flag with set comment as " " . The AS
selection will also recognize the residues in the PDB file that are not marked by the alter character (see the
a_//A description above). E.g.

 delete a_//AS # delete secondary alternatives, do not need to clear
#
 delete a_//A & a_//!AS # delete primary alternatives
 set comment a_//A " " # clear the flag
 convert

by atom code: a_//C.. a_//CH a_//M
a_//CatomCodeNum[:atomCodeNum2] - select by atom code as described in the icm.cod file, e.g.
a_//C2,C4 selects aromatic and methylene hydrogens, a_//C2:15 selects codes from 2 to 15 , e.g.
a_1.//C1:4,C101:115,C118A
a_//CHatomHydrationCodeNum[:atomHydrationCodeNum2] - by hydration/solvation code defined in
icm.cod and icm.hdt

a_//MatomMmffCodeNum[:atomCodeMmffNum2] - by mmff code e.g. a_1.//M3,M10:15 . The atom
types are described in icm.cod file.
displayed atoms, a_//D.. * a_/D[displayTypes] - Displayed atoms (e.g. a_//D for all displayed atoms,
or a_//DWC for wire or cpk). The following graphical types can be selected:

Atom selection 37

A - labeled atoms•
B - ball•
C - cpk•
D - displayed atoms or atoms in displayed residues•
T - tethered atoms•
S - skin , s -all skin atoms including zero size.•
V - Van def Waals surface larger than zero, solvent accessible surface , v all surface
atoms including zero area.

•

W - wire•
X - xstick (i.e. ball or stick)•
no arguments - any graphical representation•

Examples: a_//DA , a_//DW , a_//DD
Special named selections: as_graph graphically selected atoms:
as_graph selection contains graphically selected objects, molecules, residues, or atoms The level of
selection depends on the GRAPHICS.selectionLevel preference. The level can be changed from the
GUI interface or from command line.
strained atoms (atoms with high energy gradient)
a_//G - strained atoms (Gradient vector longer than selectMinGrad) You can also use the display
gradient command.
Example:

 build string "his trp trp"
 display
 randomize v_//phi,psi
 selectMinGrad = 100.
 show energy
 display a_//G ball
 display gradient

hydrophobic atoms a_//H
hydrogen bonding donors acceptors (one atom per residue at which the residue label is displayed)

a_//HA hbond acceptors including atoms of the following ICM types:
(50:90,201,205:207,213,214,216,217,220:223,225,228:230,234:236,239:241,246,255,281:295)

a_//HD hbond donors.

a_//E donors and acceptors combined (includes non-aliphatic hydrogens and atoms of the following ICM
types: (50:90,201,205:207,213,214,216,217,220:223,225,228:230,234:236,239:241,246,255,281:295)

a_//I donors and acceptors of the a_//E selection that are buried. This selection requires that the show
area command is used beforehand.

residue label atoms (one atom per residue at which the residue label is displayed) a_//L
polar atoms a_//P defined simply as hydrogens connected to non-carbon atoms. We will tighten the
definition in the future.

aromatic atoms a_//R It selects heavy atoms connected by aromatic bonds and hydrogens attached to
them. Example:

 build string "HWYP"
 display skin
 color skin a_//R magenta

tethered atoms
a_//T - Tethered atoms (see also a_//Z - tether destination atoms)
tether-target atoms
a_//Z - Tether destination/target atoms (see also a_//T - tethered atoms) . A more general version of
this selection is the Select_lists
chiral atoms a_//X[0123RLB] - chiral atoms. Each atom has two bits characterizing its chiral properties. If
the two bits are presented as an integer, the chiral number has the following values:

zero - a non-chiral center•
1 - a left topoisomer (L)•
2 - a right topoisomer (R)•
3 - a racemic mixture of both isomers (B)•

38 Atom selection

The chiral symbols can be appended. For example a_//X123 means a_//X1 | a_//X2 | a_//X3 .
A short form of this selection, a_//X means all chiral atoms and is identical to a_//X123 (or a_//!X0)
Examples: a_m/3:4/X1 , a_//XLR (only left or only right chiral centers, but no racemic centers),
a_//XB (only racemic centers)

See also: V_//FC to select chiral phase angles.
by absolute number
a_//absNumber - absolute number (all atoms of all objects are numbered sequentially starting from one)
converting to atom level: The Atom (selection) will convert any selection of higher level to the atom
level.

Free and all variables (v_ and V_)

The v_selection selects free
variables in molecular
objects of ICM-type.
The main types of internal
coordinates , or
geometrical variables, are
shown below:

The position of each atom branch is determined by the positions of the preceding atoms and three
parameters: dihedral angle, planar angle and bond length. The dihedral angle for the main branch atom is
the torsion angle itself, while for the secondary branch atoms the dihedral angle consists of the torsion
angle plus the phase angle. The default fixation is given in the ICM-residue library and can be
changed by fix and unfix commands. Individual free variables can be rotated interactively with
Ctrl-LeftMB-Atom-Click and drag. A vselection can also be assigned to a named variable:
Example:

 aa = v_//phi,psi # the backbone torsions
 unfix only aa
 unfix only v_/10:15/phi,psi

V_ : selecting among all internal coordinates
Finally, the V_ selection selects both free and fixed variables in molecular objects of ICM-type. You
always need this type of selection in the unfix command. It makes no sense to unfix variables which are
free already.
Here is a list of variable selection specifications:
by name:
v_//name (v_//phi)
by name pattern:
v_//namePattern (v_//x*) use asterisk * for any string, and question mark ? for any character. Example:
v_//?vt* selects the 6 "virtual" variables defining rigid body rotation and translation.
torsion variables
v_//TtorsionCodeNum[:torsionCodeNum2] - select by torsion angle code as described in the
icm.tot file, e.g. v_//T11 selects the amide group torsion angle v_//T10:15 selects torsion codes from 10 to
15

angles (planar angle variables)
v_//AangleCodeNum[:angleCodeNum2] - select by planar angle code as described in the icm.bbt
file.

Free and all variables (v_ and V_) 39

bond length variables
v_//BbondCodeNum[:bondCodeNum2] - select by bond length code as described in the icm.bst
file.
Displayed Variable Labels v_//DL - selects variables with displayed variable labels

Psi torsions not shifted to the next residue
v_//PSI - psi torsion angle which belongs to the residue you would expect. The reason for this definition is
that from ICM point of the psi backbone torsion with rotation axis between Ca and C of residue i belongs to
N-atom of the next residue i+1 because N is the first atom this torsion angle moves. E.g., v_/3/phi,psi
selection will contain the psi from residue 2 and then phi from residue 3. The definition PSI allows you to
use the conventional attribution of angles, e.g. v_/3/phi,PSI is a pair of angles with axes around Ca atom or
residue 3. Important. However, note that if you use selection expressions like
v_//phi,PSI & a_/2,3 it will not work (in contrast to a_/2,3/phi,PSI) and you will have to use the
Next function.
Example:

 vPhi = v_/3/phi
 vPsi = v_/3/PSI
BUT !!!
 vPhi = v_//phi* & a_/3
 vPsi = v_//PSI & Next(a_/3)

methyl group torsions
v_//M - torsion angles rotating Methyl-type terminal hydrogens (excluding polar hydrogen)
polar hydrogen torsions
v_//P - torsion angles rotating Polar hydrogens (e.g. hydroxyl group)
essential (non-hydrogen) torsions:
v_//H - side chain torsion angles rotating "Heavy" atoms
standard set of free torsions (excludes rings)
v_//S - all "Standard" free torsion angles as defined in the icm.tot file.
Note that v_//M, v_//P, and v_//H do not overlap, they are mutually exclusive. v_//S contains
v_//M, v_//P, and v_//H as well as other standard torsion angles.
phase angles
v_//F - select all phase angles (usually they are fixed, so use V_//F)
V_//FC - select phase angles related to the chiral centers (see set chiral and montecarlo chiral
)
all torsion angles
v_//T - select all free torsion angles, V_//T for all torsion angles including the fixed ones.

positional variables

v_//V - select all positional variables, 6-pack for each molecule or its part (see convert rs_ E.g. v_//V
, v_2//V

Functions returning selections

Acc - select solvent-accessible atom/residues.•
Atom - convert to the atom selection•
Deletion - residues deleted according to the alignment•
Insertion - residues inserted according the alignment•
Mol - convert to the molecule selection•
Name - names of items, Name(.. full) returns selection strings of items•
Next - extract the next atom•
Nof - counts number of items in a selection•
Obj - convert to the object selection•
Res - convert to the residue selection•
Sphere - expand a selection by r_radius or 5ï¿½•
Select - selection of atoms according to their coordinates, bfactors, or other properties; healing
selection gaps

•

Res(Sphere(..)) will return residues in a sphere.•

Substituting ICM-shell variables into a selection. You can insert the value of an integer or string
ICM-shell variable anywhere inside your selection by using a $ (dollar sign) prefix. (Note, this is a general
ICM-shell substitution mechanism).
Examples:

40 Functions returning selections

 selstr="!w*/14:19" # a string constant
 display a_$selstr

Logical operations. You can also assign selection to a variable, (i.e.: backbone=a_//ca,c,n) combine
several selections using logical operators (example: show a_/3:6 & backbone) .

Finding contiguous residue ranges with the String function

To identify contiguous ranges of residues in residue selection, use the String (rs_) function which will
convert your selection into a string expression suitable for entering into a ICM-shell. For example, if we
want to find all prolines surrounded by two other helical residues helical proline plus next and prev.
residues we might do the following:

 read pdb "1dkf"
 rrange = String(a_/"?P?") # the result would look like "a_a.b/5:7,30:32"
 rg = Split(rrange,"/,|") # split into sarray with {"a_a.b","5:7","30:32"}
 # bar (|) helps with multiple chains
 okrg={""}
 k=0 # counter for good residue triplets with HHH and ?P?
 for i=2,Nof(rg)
 if Nof(Split(rg[i],":")) != 2 continue # ignore molecular names
 if Sstructure(a_/$rg[i]) == "HHH" then # compare with ss-pattern
 k = k+1
 okrg[k] = rg[i]
 endif
 endfor
now ok-ranges are stored in okrg string array e.g. {"5:7"}
to use them Sum(okrg,",")

Regular expressions (regexp)

Functions supporting regular expressions:

Match match expressions in a string or sarray•
Replace - replace expressions in a string or sarray•
Index - find substring position and length•
Split - by a regular expression•

See regexp syntax .

ICM regular expression syntax

Simple expressions

. any character except new line (to match anything, say (.|\n) or use (?n) in the beginning of the
expression)

•

^ the beginning of the line•
$ the end of the line•
[abc] any character from the list•
[^abc] any character NOT in the list•
[a-z] a range, e.g. [0-9] or [0-9A-Z]•
\c backslash suppresses special meaning of a character•
\\ backslash itself•
(string) enclose a simple expression in parentheses to write repetitions, back-references, or
field=number expressions in the Split, Match and Replace functions.

•

Inline modifiers of regular expressions:

(?i) ignore case until the end of the same enclosing group, e. g. 'aBc' ~ '(?i)abc', 'a((?i)bc)d'
matches 'aBCd','abcd','aBcd', but not 'Abcd' or 'abcD'

•

(?-i) match case-sensitive until the end of the same enclosing group, e. g. 'a(?i)bc(?-i)d' matches
'aBCd', but not 'Abcd' or 'abcD',

•

(?n) begin matching newline character with dot '.': "1bc\nd2" ~ '(?n)1.*2'•

Finding contiguous residue ranges with the String function 41

Shortcuts

\d matches a digit ('[0-9]'). '\d+' matches one or more digits.•
\D matches a NON-digit. '\D+' matches space between numbers•
\w matches a character in a word ([a-zA-Z_]). '\w+' matches a word•
\W matches a NON-word character. '\W+' matches the interword space•
\s matches a whitespace character, or a separator ([\r\t\n\f])•
\S matches a non-separator symbol•
\b matches a word boundary, i. e. a boundary between \w and \W symbols, for example,
'\bedgeh\b' matches inside 'the edge' and does not match inside 'the hedge'

•

Repetitions and back-references

(a and b are simple regular expressions, e.g. a DNA base [ACTG], or
([hp]anky.*)):

a? - nothing or a single occurrence of a•
a* - nothing or any number of repetitions of a•
a+ - matches a at least once or more•
a{n,m} - matches a from n to m times•
a|b - matches a or b•
ab - matches a and b•
(a)\1 - \1 is a back-reference: matches a, then matches exactly the same string. Back-references
can go from \1 to \9.

•

A problem with the posix repetitions

Imagine that you want to match text between two tags, e.g. <i>one</i> in a text which has two items of
the same kind (<i>one</i> and <i>two</i>). Unfortunately, we can not just use <i>.*</i> to
match <i>one</i> since the POSIX standard tries to match the MAXIMAL LENGTH expression
between the italic tags (shown in bold are the flanking expressions: <i>one</i> and <i>two</i>).
A straight-forward solution of this problem is to make a more complex definition of the word between the
tags, by saying that the 'italized' word should not contain the '<' symbol.

ICM followed Perl in using the question mark (?) after the repetition symbol to enforce the minimal match.
The minimal match expressions will look like this (a is a simple regular expression, like a character or a
string in parentheses):

a?? - nothing or a single occurrence of minimal occurrence of a•
a*? - nothing or any number of repetitions of minimal occurrence of a (e.g.
Match(s,'tag(.*?)endtag':n))

•

a+? - matches a at least once or more•

Therefore:

'<i>.*</i>' - matches the entire 'one</i> and <i>two'•
'<i>[^<]*</i>' - explicitly prohibits the tag inside. matches only the first word•
'<i>.*?</i>' - the '*?' expression enforces the smallest match•

Parsing XML example: DrugBank.

The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed
drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e.
sequence, structure, and pathway) information. The database contains 6826 drug entries including 1431
FDA-approved small molecule drugs, 133 FDA-approved biotech (protein/peptide) drugs, 83 nutraceuticals
and 5211 experimental drugs. Additionally, 4435 non-redundant protein (i.e. drug
target/enzyme/transporter/carrier) sequences are linked to these drug entries. Each DrugCard entry contains
more than 150 data fields with half of the information being devoted to drug/chemical data and the other
half devoted to drug target or protein data. Read more information: here

The most complete drug information (target, transporter, carrier, and enzyme information) is provided in
XML format. Chemical structures are provided separately in SDF format

42 ICM regular expression syntax

The following example will demonstrate how to deal with such data in ICM.

Read the XML data directly from the website

read xml "http://www.drugbank.ca/system/downloads/current/drugbank.xml.zip" name="drugbank"

The command above will create collection object "drugbank".

1.

Examine the content

icm/def> Name(drugbank)
#>S string_array
drugs

This shows us that collection contains a single root node called "drugs"

2.

Going further gives the following:

icm/def> Name(drugbank["drugs"])
#>S string_array
drug
partners
xmlns
xmlns:xs
xs:schemaLocation
icm/def> Type(drugbank["drugs","drug"])
array
icm/def> Type(drugbank["drugs","partners"])
collection
icm/def> Name(drugbank["drugs","partners"])
#>S string_array
partner
icm/def> Type(drugbank["drugs","partners","partner"])
array

Which means that drugbank["drugs","drug"] is an array where each entry contains the
information about particular drug. In addition there is an another array
drugbank["drugs","partners","partner"] which contains an additional information about targets.

3.

Examine individual entries

drugbank["drugs","drug"][1]
drugbank["drugs","drug"][2]
drugbank["drugs","partners","partner"][1]
drugbank["drugs","partners","partner"][2]

The default output format for displaying collection is JSON which gives you nicely formated
easy-to-read text. Looking at the output it's easy find the fields of interest.

WARNING: do not try to show the entire array into the terminal window because it'll take very
long and most likely you'll need to kill the window.

4.

Fetching individual fields

Let's create a table with a single column containing an array with drug cards.

add column drugs drugbank["drugs","drug"]

Hint: In GUI you can resize all simultaneously by holding 'CTRL' key which resizing an
individual row.

The single field can be extracted by providing dot separated path to it. Note that fields which
contain non-alphanumeric characters must be quoted.

A.drugbank - OK♦
A.'drugbank-id' - must be quoted♦

extracts drugbank-id into separate column
add column drugs function="A.'drugbank-id'" name="drugbank_id"
extracts name into separate column
add column drugs function="A.name" name="name"

5.

Fetching multi-value fields

Multiple properties will be extracted as an array for each drug entry.

display targets information for the second entry
drugs.A[2]["targets","target"]
extract array of partner IDs for each drug into separate column

6.

Parsing XML example: DrugBank. 43

add column drugs function= "A.targets.target.partner" name="partner_id"
Type(drugs.partner_id[2]) # array

This way to extract multiple properties has one problem. For entries with only one property the
result will be not array but rather individual value (E.g: Type(Type(drugs.partner_id[1]). This
will prevent from the unified access to the column in the future. In such cases it's recommended to
use ':' operation instead of '.'. The result of this operation will always be an array (even for single
entries).

delete drugs.partner_id
add column drugs function="A.targets.target:partner" name="partner_id" # will create an array for all entries.
Type(drugs.partner_id[1]) # array (even for single entries)
Querying XML fields

Let's say you want to extract a value of the property with name which start with "logP". It can be
done similar to the ICM-table filtering operations. The only difference is that colon
':' (instead of dot) must be used to separate field name

The general filtering syntax:

<field1>.<field2>:<queryField> <op> <value>

The following operations are supported in array filtering: ==,!=,>,=,<=,~,!~

Example:

query and extract logP property
add column drugs function="(A.'experimental-properties'.property:kind ~ '^logP').value[1]" name="logP"

Note that some entries contain text information ('0.61 [HANSCH,C ET AL. (1995)]') so the result
column will not be automatically converted to rarray. You can convert it explicitly:

empty or 'bad' entries will be marked as 'ND'
add column drugs Rarray(drugs.logP) name="logPNum"
delete drugs.logP

The other example will extract Wikipedia links:

add column drugs \
 function="(A.'external-links'.'external-link':resource == 'Wikipedia')[1].url"\
 name ="wiki"

7.

Joining with information from drugbank["drugs","partners","partner"]

For each drug entry we have list of partner IDs which refers to information from
drugbank["drugs","partners","partner"] array. To join them we need to add this array to the
other table and extract fields which will be used in join.

creates a table and put partner entries there.
add column partners drugbank["drugs","partners","partner"]
extract ID column which will be used to join with drugs.partner_id
add column partners function= "A.id" name="id"
extract uniprot-id from the "external-identifiers" array using query functions
add column partners \
 function= '(A."external-identifiers"."external-identifier":resource ~ "UniProtKB")."identifier"[1]' \
 name = "uniprot_id"

Finally we need to join drugs.partner_id with partners.id.

join drugs.partner_id partners.id column ="drugs.*,partners.uniprot_id" name="drugs"

Note that since drugs.partner_id contains multiple entries for each row the result drugs.uniprot_id
will also contain multiple entries for each row. You can set special format with set format
command to execute a special action when particular uniprot entry is clicked.

load sequence
set format drugs.uniprot_id \
 "<!--icmscript name=\"1\"\nread sequence swiss \"http://www.uniprot.org/uniprot/%1.txt\"\n-->%1"
or simply go to the website
set format drugs.uniprot_id "%1"

8.

Joining with chemical structures The final step would be to add a chemical structure
information.

9.

44 Parsing XML example: DrugBank.

read SDF from the website
read table mol "http://www.drugbank.ca/system/downloads/current/structures/all.sdf.zip" name="drugs_chem"
join 'mol' column
join drugs.drugbank_id drugs_chem.DRUGBANK_ID column="drugs.*,drugs_chem.mol" name="drugs"

A little bit more rearrangements and your table is ready to be exported to SDF file.

move drugs.mol 1 # move structure column to the first position
delete drugs.A # delete drug-card information
delete drugs.partner_id # delete partner id information
write table mol drugs "mydrugs.sdf"

See also: collection, read xml

Hierarchical cluster trees

The records, or rows, of any table can be clustered into a hierarchical tree, and one or several trees
associated with this table can be stored with it, displayed and edited in the ICM GUI, and deleted.

A tree is created with the make tree command. We can decide 1) the tree type and, 2) the distance
function between two table rows, as well as establish a number of arguments. Then a tree object is added to
the header of the table and is stored together with the table. The table gets a new column with the tree
order, and optionally two new elements: and a column with the branch number at a certain level, (option
split) and the distance matrix (option matrix).

The related commands and functions:

make tree create tree object and attach it to the table
Split function to split cluster by threshold or number of clusters
split command to change the position of tree cursor (separator) and recalculate new cluster numbers
Name(table.cluster i_tree [index,label,matrix,sort,split]) names of
important table columns
Max(table.cluster) the distance of the root node
Distance of the cluster splitting level
Nof(table.cluster tree) clusters
Centers of clusters
Example:

create a distance matrix
m=Matrix(5,3)
m[2,1:3]={1. 0. 0.}
m[3,1:3]={1. 1. 0.}
m[4,1:3]={1. 1. 1.}
m[5,1:3]={1. 0.1 0.1}
D = Distance(m)

create a table and move distance matrix into header
group table t { "a" "b" "c" "d" "e" } "label" {1. 2. 2. 1. 4. } "val"
group table t append header D "dm"
make tree t distance = "dm" # uses external distance matrix for clustering

get cluster number with threshold set to the middle
cl = Split(t.cluster, Max(t.cluster)/2)
add column t cl name="cl"

group by cluster and take rows by smallest value of "val" column
group t.cl t.val "min" all "refmin" name="t1"

Selecting N representatives from clusters

This involves several steps:

creating a tree and a table column with cluster numbers•
selecting cluster representatives according to a certain threshold in the cluster tree•

Example:

Hierarchical cluster trees 45

read table mol s_icmhome + "drug_groups.sdf"
make tree drug_groups
I = Index(drug_groups.cluster center 0.4) # divide at threshold 0.4

Arithmetics
Most of the ICM-objects can be used in arithmetical, logical of comparison expressions. In this section we
describe operations defined in the ICM-shell.
Members of the arithmetic, logical and comparison expressions
Abbreviations: integer (i), real (r), string (s), logical (l), iarray (I), rarray (R),
sarray (S), matrix (M), sequence (seq), profile (prf). alignment (ali), map (m),
graphics object (grob) (g), atom selections (as), selections of internal
coordinates, for example torsion angles, (vs) , and table (T). Table arrays are abbreviated as T.I,
T.R and T.S, depending on the type
Assignment

allows you to assign a value to a variable.
Syntax: ICM-shell-variable-name = Value or expression
If the name is new, a new ICM-shell variable is created , an object of the matching type will be overwritten.

Examples:

 a=1 # create new integer variable a
 b=a*a # create variable b as product a*a
 c=a*Sin(45.) # create new real variable c

Chain assignment for the logical system variables and semi-colon separated commands. Exressions
like l_info=l_commands=l_warn=no are allowed for the logical system variables

Also, from version 3.6-1 several semi-colon separated commands can be specified in one line.

Assignment fo selected elements of an array:

array[I_indices] = Value

array[I_indices] = Matching_array_of_values

Several elements in integer, real and string arrays can be assigned at once to a single value , or,
element-by-element to a matching array. Example:

a = {1 2 3}
a[{1 3}] = { 3 1 }
a[{1 3}] = 10

Unique name.To find a unique name for a new variable, use the Name("nameRoot" , unique) function.

Assignment and operations in place are also possible and it allows to modify an existing variable rather
than create a new one. Example:

i += 1 # adds one to i, better than i = i + 1
s += " and more .. "
I //= 15 # append to an iarray
R //= 1.5 # append to an rarray
S //= "one more element" # append to an sarray

Arithmetic operations

The following operations are defined in the ICM-shell:

addition (+) :
i+i returns i (e.g. 2+3 returns 5),♦
i+r, r+i, r+r return r (e.g. 2+3. returns 5),♦
I+I returns I (e.g. 1,2+{2,3} returns 3,5),♦
I+R, R+I, R+R return R (element by element),♦
s+s, s+i, s+r return s (i.e. "what" + "If" returns "whatIf","file"+2 return "file2"),♦

•

46 Selecting N representatives from clusters

S+S, S+I, S+R return S (the above three operations for each element),♦
M+M returns M of the same dimensions (element by element addition),♦
prf+prf returns prf,♦
grob + R3 return grob with coordinates translated by R3,♦
map+map, map+i, map+r, i+map, r+map returns map of the same dimensions.♦

subtraction (-) :
i-i returns i,♦
i-r, r-i, r-r return r,♦
I-I returns I,♦
I-R, R-I, R-R returns R (element by element),♦
M-M returns M of the same dimensions (element by element subtraction),♦
map-map, map-i, map-r, i-map, r-map returns map of the same dimensions.♦

•

multiplication (*) :
i*i returns i,♦
i*r, r*i, r*r returns r,♦
I*I returns I (element by element, e.g. {1,2}*{3,4} returns 3,8),♦
I*R, R*I, R*R return R (element by element). The scalar product is returned by
Sum(R_1,R_2), and the vector product is returned by Vector(R_1,R_2) (two 3D
vectors)

♦

M*M returns a matrix product of the two matrices (M[nk]*M[km]==>M[nm]),♦
M*R, R*M returns R,♦
prf*prf returns prf,♦
map*r, map*i, i*map, r*map, map*map return map (operations on each element),♦
grob*r, grob*i, r*grob, i*grob return grob with transformed coordinates.♦

•

division (/) :
i/i returns i (integer division, e.g. 3/4 returns 0),♦
i/r, r/i, r/r return r (real division, e.g. 3/4. returns 0.75),♦
I/I returns I (integer division of elements),♦
I/R, R/I, R/R return R (real division of elements),♦
map/r, map/i return map (operations on each element),♦
grob/r, grob/i return grob with transformed coordinates.♦

* concatenation, appending into array (//) :
i//i returns I[2] (e.g. 2//3 returns 2,3),♦
r//r returns R[2] (e.g. 2.2//3.3 returns 2.2,3.3),♦
s//s returns S[2] (e.g. "a"//"b" returns "a","b"),♦
I//i returns I[n+1] extended by the integer (e.g. 1,2//3 returns 1,2,3),♦
I//I returns I[n+m] (e.g. 1,2//{3,4} returns 1,2,3,4),♦
R//r returns R[n+1] extended by the real (e.g. 1.,2.//3. returns 1.,2.,3.),♦
R//R returns R[n+m] (e.g. 1.,2.//{3.,4.} returns 1.,2.,3.,4.),♦
S//s returns S[n+1] extended by the string (e.g. "a","b"//"c" returns "a","b","c"),♦
S//S returns Sn+m (e.g. "a","b"//{"c","d"} returns "a","b","c","d"),♦
M[n,m]//M[n,k] returns M[n,m+k] (matrix concatenation row by row),♦
seq//seq returns concatenated seq (similar to s+s);♦
prf//prf returns concatenated prf;♦
grob//grob returns concatenated grob (similar to s+s);♦
parray//parray returns concatenated parray; (this applies to different types of pointer
arrays, e.g. chem_array//chem_array)

♦

* ali1//ali2 returns projected alignment. Projected concatenation of two alignments
sharing the same sequence. The shared sequence serves as a ruler for merging the two alignments.
The alignments can be of arbitrary size and number of sequences. In the simplest case of three
sequences a, b, c and alignments ab and bc, the operation ab//bc will create an alignment of
three sequences a b c . The function Align(ab//bc,{1,3}) will extract the, so called,
projected alignment of a and c through b. Example:

 ali1 // ali2 returns Projected ali.
a VYRWA-W b FK-WG--KW a VYR-WA---W
b -FKWGKW c AKGWAPGKW b -FK-WG--KW
 c -AKGWAPGKW

•

Additionally, character arrays (strings) can be projected from sequence to alignment and back with the
String (..) function and numerical residue properties can be projected from sequence via alignment with
the Rarray (..) function.

Arithmetic operations 47

Logical operations

Logical operations with table arrays are described separately (see table in Glossary).

and (&):
l & l returns logical, e.g. yes & no returns no♦
as & as returns selection as with objects molecules residues present in both initial
selections, (e.g. a_2//ca & a_//T returns the tethered Ca atoms of the 2nd
molecule),

♦

as & s, multiplication by a string mask, e.g. a_//ca & "x-" returns the odd Ca atoms.♦
as & seq returns residue sub-selection of as with the matching sequence, e.g. a_*. &
1crn_m returns residues matching the crambin sequence.

♦

as & R returns atom sub-selection with coordinates within a six dimensional box array
R (see also function Box) , e.g.

 read pdb "1crn"
 display ribbon
 color ribbon green Res(a_//* & {0.,0.,0.,9.,9.,9.})

More types of selections are returned by the Select, Sphere, and Acc functions.

♦

vs & vs returns selection vs of internal coordinates present in both initial selections, (do
not forget that v_ are free variables, and V_ are all variables);

♦

vs & as returns subset of initial variables vs which is related to selection as, e.g.
side-chain torsion angles in the sphere around loop 14:18 can be selected as follows:

 V_//xi* & Sphere(a_/14:18)

♦

multiplication comments on logical multiplication of two selections below.

•

or (|) :
l|l returns l (e.g. yes|no returns yes),♦
as|as returns as with members of both selections (e.g. a_/4:6 | a_//ca)♦
vs|vs returns vs with variables from both selections (e.g. v_//phi,psi | v_/3)♦
vs|as returns vs is equivalent to vs | (V_//* & as)♦

•

not (!) :
!l returns logical negation to the argument (e.g. !yes returns no),♦
!as returns aselection of the same level with members not included in the selection
argument (e.g. !a_//ca)

♦

!vs returns vselection with variables not included in the selection argument (e.g. !
v_//phi,psi)

♦

Negation can also be applied to each section between slashes of as_ or vs_. E.g. a_//!h* (all
non-hydrogens).

•

In place operations.

ICM-shell variables can be modified in place by using the following operators:
operator function data types example
+= add in place i,r,s i += 1
-= subtract in place i,r r -= 2.2
*= multiply in place i,r r *= 2.
/= divide in place i,r r /= 2.
//= append an element to an array I,R,S,P t.Name //= "Jack"

If a variable does not exist yet, this operation will create the variable and assign a type according to the
right-hand operand.
Comparison operators

Most of them are true comparison operators and return logical yes or no. In comparisons of table
arrays or string arrays with strings, the comparison returns a subtable or subarray, respectively. Comparison
operations with the table arrays are described separately (see table in Glossary).

equal (==):
i==i, i==r, r==i, r==r, s==s, I==I, R==R, S==S, M==M, as==as, vs==vs, exact
equality of two objects;

♦

p==i, p==s return l. Test the value of an ICM-shell preference . Example:

 if(wireStyle==1) print "int. or string is ok" # or

♦

•

48 Logical operations

 if(wireStyle=="chemistry") print "double bonds"
S==sreturns S, a sub-sarray of elements exactly matching s (e.g.
"aa","b","aa","c"=="aa" returns "aa","aa", see also S ~ s),

♦

not equal (!=) :
i != i, i != r, r != i, r != r, s != s, I != I, R != R, S != S, M != M, as != as, vs != vs
inequality of two objects;

♦

p!=i, p!=s return l. Test an ICM-shell preference . Example:

 if(wireStyle != 2) print "No chemistry, sorry"

♦

S!=s returns S, a sub-sarray of elements not matching s (e.g.
"aa","b","aa","c"!="aa" returns "b","c", see also S !~ s).

♦

•

greater than (>) :
i > i, i > r, r > i, r > r♦
s > s lexicographic comparison for sorting ("apple" < "orange")♦

•

less than (<) :
i < i, i < r, r < i, r < r, s < s♦

•

greater or equal (>=) :
i >= i, i >= r, r >= i, r >= r, s >= s♦

•

less or equal (<=) :
i <= i, i <= r, r <= i, r <= r, s <= s♦

* fuzzy-equality, inclusion or pattern matching (~):
s~sreturns logical yes if string matches a pattern.♦
S~sreturns S of sarray elements matching the pattern s. This comparison is similar to the
UNIX grep command; it returns a subarray of lines matching the pattern rather than yes
or no. Do not forget to add flanking asterisks (*) if the pattern occurs in the middle of a
string. Example:

 show {"abc","bcd","ee"} ~ "*[be]?"
 # Another example
 read database s_icmhome + "foldbank.db"
 # sarray SE contains sequences
 CxCseqs = SE ~ "*C?C*" # all strings containing C?C pattern

♦

•

fuzzy-not-equal (!~) :
s !~ s returns logical yes if string does not match a pattern s.♦
S !~ s returns S of sarray elements not matching the pattern s. S!~s is similar to the UNIX
grep -v command; it returns a subarray of lines not matching the pattern.

♦

•

Advanced operations and some comments

Integers are automatically converted to reals in binary operations containing both integers and
reals. However, in expressions like integer1 / integer2 (the same for iarrays) they are not
converted into reals and the result will be different from what you might expect. For example,
3/4 returns 0, but 3/4. returns 0.75.

1.

In s+i, s+r, S+I, S+R expression numbers are automatically converted into strings. In the s+s
expression the second string is simply appended to the first one. Examples:

 show "one " + "two" # result: "one two"
 file = "aa"+ 4 # result: "aa4"
 show {"a","bb"} + {1.2,3.2} # result: {"a1.2","bb3.2"}

2.

Selection arithmetics. The level of the expression as_1 & as_2 & as_3 ... or as_1 | as_2 | ... (the
same with vs_) is defined by the lowest level selection in the chain (atoms - the lowest < residues
< molecules < objects). For example, in an expression a_/10 | a_2/15/cg the second selection is an
atom-level-selection and the first one is a residue-level one. The result is the atom selection of all
atoms of residue 10 plus Cg atom from residue 15.

3.

Selection logically multiplied by string, array, or mask Multiplication of a selection to a
string-mask or sequence. The resultant selection inherits level of the first argument. The mask is
applied periodically to switch off some of the selected elements. For example mask "0001111"
will switch off the first three elements in every seven. The 'switch off' characters may be the
following: ' ' (space),'-','0'. Example masks to switch off the third element of five: "xx xx",
"11011", "++-++" . Operations upon the sequence will select only the fragment with the
specified sequence from the original selection. Multiplication by an array of 6 numbers
{x,y,z,X,Y,Z} selects atoms within the specified box. Example:

 read object "crn" # load crambin object
 rs_ = a_/11:15 # define residue selection rs_
 rs_ = rs_ & "xx xx" # switch off the third element (res. 13)
 display cpk a_//* & {1. 0. 1. 5. 7. 6.} " # a box

4.

Comparison operators 49

Transitional (or projected) alignment Projected concatenation of two alignments sharing the
same sequence. If two-sequence alignments share the same sequence, they may be merged
with the shared sequence as a ruler. In the simplest case of three sequences a, b, c and alignments
ab and bc, the operation ab//bc will create an alignment of three sequences a b c. The function
Align(ab//bc,{1,3}) will extract the, so called, projected alignment of a and c through b.

5.

Examples of expressions:

 i = i1/i2 + (i3-r4)*2.5/Pi

 l_results=(l_beer & l_wine & !l_snacks) | l_vodka
 if (l_results & n_glasses >= 4) print "Hangover.."

 for i=1,215 # list streets of Manhattan north from Houston
 print "Street " + i
 endfor

 prices = { 25. 6. 12.6 }
 tips = { 4. 1. 2. }
 print prices + tips # the result is { 29. 7. 14.6 }

Flow control
ICM contains a complete set of control statements to allow looping, jumping and conditional branching.

Loops

Two types of loops are allowed, namely for-loop and while-loop.
For-loop

 for <i_index> = <i_from> , <i_to> [, <i_increment>]
 ...
 ...
 endfor

While-loop

 while(<logical_expression>)
 ...
 ...
 endwhile

Examples:

 for i = 1, 9
 print "ICM-shell proudly announces that i=" i
 endfor

 for i = 1, 4
 print "ICM-shell proudly announces that i=" i
 for j = 1, 3
 print "ICM-shell proudly announces that nesting is possible and j=" j
 endfor
 endfor

 read object "crn"
 for i = 1, Nof(a_/*) # Nof(a_/*) means 'the number of residues'
 print Label(a_/$i)
 endfor

 i = -2
 while (i != 4)
 i = i+1
 print i
 endwhile

 while(yes)
 print "endless loop, please wait 8-)"

50 Advanced operations and some comments

 endwhile

Any number of nested loops may be used.

Conditional branching

Several types of conditional statements are allowed in the ICM-shell.
if

 if (<logical_expression>) <command>

if-then-endif

 if (<logical_expression>) then
 ...
 ...
 endif

if-then-elseif-..else-endif

 if(<logical_expression>) then
 ...
 else
 ...
 endif

or

 if (<logical_expression>) then
 ...
 elseif (<logical_expression>) then
 ...
 elseif (<logical_expression>) then
 ...
 else
 ...
 endif

Note: end if or else if (instead of endif or elseif) are not accepted by ICM-shell.
Examples:

 JohnnySaid = "The gloves didn't fit"
 if (JohnnySaid == "The gloves didn't fit") print "You must acquit"

 grade = "bad"
 if (grade == "excellent") then
 print "It's great!"
 elseif (grade == "good") then
 print "It's good!"
 elseif (grade == "bad") then
 print "It's not so bad!" # do not be harsh on your kids
 endif

Jumps

Three types of jump controls are possible, namely commands break, continue and goto. break interrupts
the loop, continue skips commands until the nearest endfor or endwhile and continues looping, and goto
jumps to any point below.
break

 <for-loop> or <while-loop>
 ...
 if (<logical expression>) break
 ...
 <end of loop>

continue

Loops 51

 <for-loop> or <while-loop>
 ...
 if (<logical expression>) continue
 ...
 <end of loop>

goto

 ...
 if (<logical expression>) goto <label>
 ...
 ...
 <label>:
 ...

Examples:

 for i = 1, 6
 print "currently i=", i, "and it will be increased at the next step"
 if (i == 3) then
 print "... but at this point we should stop it, sorry..."
 break
 endif
 endfor
 print "end of the loop demonstrating *break*, bye"

 for i = 1, 6
 if (i == 3) then
 print "... let us skip over step 3 and continue looping"
 continue
 endif
 print "currently i=", i, "and it will be increased at the next step"
 endfor
 print "end of the loop demonstrating *continue*, bye"

 for i = 1, 5
 if (i == 3) then
 print "... but at this point we decided to skip 3-rd step, sorry..."
 goto A
 endif
 print "currently i=", i, "and it will be increased at the next step"
A: print " "
 endfor
 print "end of the loop demonstrating 'goto', bye"

Note: go to (instead of goto) is not accepted by the ICM-shell. Any combination of alphanumeric
characters beginning with a letter (upper or lower case) may serve as a label. Also keep in mind that goto
can jump only forward; the backward goto is not allowed.

ICM molecular objects
An ICM molecular object represents one or several molecules which can coexist in physical space, so that
the energy of the molecular system can be calculated. For example, if you have two homologous molecules
superimposed, multiple conformations of the same structure such as NMR structure determinations or
alternative positions of a side chain, they must belong to different objects. The number of objects that may
be loaded in ICM is limited only by the available computer memory. Objects may be of several types (see
also: the Type (os_ 2) function):

"ICM" - the only complete type which is good for everything including energy calculations•
"X-Ray" - incomplete (stripped) object created by read pdb. The structure is determined by
X-ray crystallography. Good for graphics and geometrical analysis

•

"NMR" - incomplete (stripped) object, structure determined from NMR data, similar to the
"X-ray" type above.

•

"Model" - incomplete (stripped) object, theoretical model also similar to the "X-ray" type above.•
"Ca-trace" - incomplete (stripped) object, only alpha-carbon atoms.•
"Simplified" - simplified representation.•

ICM-molecular objects are created from residues and molecules described in the ICM residue
library. Its content (sequences and names of molecules) is specified in an ICM sequence file

52 Jumps

(see also IcmSequence function). An ICM-object can also be created from a non-ICM object (e.g. of
X-Ray type) with the convert command.

Energy and Penalty Terms
The energy function calculated for any conformation of an ICM molecular object consists of individual
terms described in this section. For most of them ICM calculates analytical derivatives which use gradient
minimization. The terms can be switched on and off with the set terms [only] "xx,yy,.."
command, e.g.

 set terms "el" # activate electrostatic term
 set terms only "vw,14" # reactivate only "vw" and "14" terms

Existing terms are returned in s_out after the show term command, or returned by the Info (term)
function.

The following commands also understand shortcuts for groups of energy terms:

show energy•
minimize•
montecarlo•

The list of shortcuts:

"energy","ecepp","ecep","ey" is equivalent to "vw,14,to,hb,el,ss"•
"map" or "mp" returns a set of terms according to the existing maps. If a map with a suitable
system name is found, the terms is activated (see also Info (map)). The following map names
trigger the corresponding term activation:
"m_gh","m_gc","m_gb","m_ge","m_gs","m_g1",..,"m_g5"

•

"mmff" is equivalent to "bs,bb,af,vw,14,to,hb,el,ss"•

van der Waals ("vw")
nonbonded interatomic pairwise interactions (1-5 and further, i.e. two atoms separated by more than 3
covalent bonds). If not for tests, this terms should always be used with the "14" energy term which
considers 1-4 interactions. The ECEPP/3 force field is used. Parameters are specified in the icm.vwt
file and are taken from Momany et al., 1975. Both the usual 6-12 term and a soft van der Waals
terms are available. See also: vwMethod, vwSoftMaxEnergy, vwCutoff .
1-4 van der Waals ("14")
A part of the total van der Waals energy for atoms separated by exactly three covalent bonds. Repulsion for
1-4 pairs is cut in half according to the ECEPP energy function. This term is complementary to the "vw"
term and is usually used with the "vw" energy term.
Hydrogen bonding energy ("hb")
A different form of the "vw" term (10-12 instead of 6-12 for "vw") for hydrogen bonding donors and
acceptors as specified in icm.cod and icm.hbt files. Parameters are taken from Momany et al.,
1975. The electrostatic contribution to a given hydrogen bond is not included in "hb" and is calculated as
part of the electrostatic energy.
The cutoff distance for hydrogen bonding interactions is controlled by the hbCutoff parameter.
Torsion energy ("to")
dihedral angle deformation energy K*(1+-cos(n*Phi)). The parameters K, sign and n are given in
icm.tot file. Parameters are taken from Momany et al., 1975,
Electrostatic energy ("el") This term is calculated in four different ways depending on the value of
electroMethod preference. If electroMethod="boundary element" the solvation component
is in r_out and the envelope surface area in r_2out .
A special case: if the van der Waals energy is calculated with the vwMethod ="soft" , the electrostatic
energy will be automatically buffered to avoid singularities. You will see that the electrostatic term "el"
changes upon switching from vwMethod=1 to vwMethod=2 . The buffering artifically increases the
distance between two charged atoms to avoid having negative energy values better than the van der Waals
repulsion and, therefore, will prevents collapse of oppositely charged atoms.

A simple electrostatic energy (electroMethod="Coulomb"). The Coulomb law is used to
evaluate the energy. The dielectric constant is constant.

1.

the distance dependent electrostatics (electroMethod="distance dependent" ;
currentDielConst = dielConst * DISTANCEij) Advantage: this term has analytical derivatives
and can be used in local energy minization.

2.

A better electrostatic free energy (electroMethod="MIMEL"), uses the Modified IMage
ELectrostatics approximation (Abagyan and Totrov, 1994) to evaluate both the

3.

ICM molecular objects 53

internal Coulombic energy and electrostatic polarization free energy. Disadvantage: this term has
no analytical derivatives and has no effect on local energy minimization. It can be a part of the
energy function in global optimization such as montecarlo or ssearch . The solvation
component is stored separately in r_out . REBEL provides a more accurate evaluation of the
electrostatic solvation energy. For small molecules, use mimelDepth = 0.3 (default 0.5).
The most accurate electrostatic free energy: (electroMethod="boundary element")
which uses so called boundary element method to solve the Poisson equation to
calculated a electrostatic free energy of a protein surrounded by a continuous aqueous solution. In
addition to the total energy, one can extract the two components: the electrostatic solvation energy
from r_out , and the Coulomb energy can be calculated as a difference between the total
electrostatic energy and r_out.

4.

Surface term ("sf"). Map m_ga
Surface energy is based on atomic solvent-accessible surfaces. Depending on the surfaceMethod
preference this term is either a surface tension which is evaluated as a product of the total solvent
accessible area by the surfaceTension parameter (currently 0.012 kcal/mole/A2) or is a product of
atomic accessibilities by the atomic energy density parameters similar to those proposed by Wesson
and Eisenberg (1992) (check icm.hdt file). The "sf" term is evaluated at each Monte Carlo or
systematic search step, but not during local minimization (we do not calculate analytical energy
derivatives).
The atomic accessible surfaces are calculated using a faster modification of the Shrake and
Rupley, (1973) algorithm where the surfaceAccuracy parameter defines the resolution. This
algorithm analyzes all atom neighbors for each atom and Sometimes a part of molecular system is
represented with the grid energy terms ("gc","gh") rather than by explicit atoms. In this case the
atomic accessibilities need to be corrected.
This correction can be introduced with a special map, called m_ga which stores implicit neighbor
information from the parts represented with the grid potentials. The m_ga map is calculated with the make
map potential "sf" .. command (see the make map potential command), along with other
grid maps.
The surface term can be weighted with the sfWeight parameter and is affected by the
surfaceAccuracy parameter (set it to 5 for higher accuracy).
Entropic free energy term (conformational entropy of side-chains) ("en")
Configurational entropy of side-chains is evaluated on the basis of their maximal possible entropy which is
read from the residue library. Note that this term is calculated at room temperature (300 K), so
that the ICM-shell variable temperature does not affect the entropic contribution (see Abagyan
and Totrov, 1994 for values) and solvent-accessible area of a side-chain.
Phase angle bending term ("af")
Harmonic term U*(f1-f0)2. Parameters U and f0 are taken from icm.bbt file. Sometimes referred to as
improper torsion.
Bond stretching energy ("bs")
Harmonic term U*(b1-b0)2. Parameters U and b0 taken from icm.bst file.
Distance restraints ("cn") a penalty term restraining two atoms to a certain distance range. The shape of
the potential is soft square well with lower and upper bounds. This term may be used to determine
three-dimensional structure from a set of interproton distances (NOEs) resulting from NMR experiments.
There are local and global distance restraints (drestraints). Local restraints become weaker and vanish as
the distance grows (similar to the van der Waals forces), while global restraints become stronger as you
deviate further from the required distance range.
See also files: icm.cnt and icm.cn .
Disulfide bonds and covalent bridges ("ss")
a penalty term establishing the additional (extra-tree) covalent bridges. Currently there are three types of
covalent bridges: disulfide bonds, peptide bonds and thioester bonds. In each case several distance
constraints are imposed to enforce the correct covalent geometry. The constraints for the disulfide bonds
include Sg1-Sg2, Sg1-Cb2, Sg2-Cb1, Cb1-Cb2 atom pairs. The extra CO-NH bond involves C-N, C-H,
O-N and O-H constraints. Similarly, CO-SH bond involves C-S, C-H, O-C, O-H, C-C and O-H constraints.
The functional form of this penalty term is identical to local distance restraints. The
disulfide SS bonds are automatically formed when you load the object. The disulfide bonds may be
LOCAL, i.e. when two sulfur atoms feel each other ONLY at small distances. See also: icm.cnt,
disulfide bond, make disulfide bond, make peptide bond, delete disulfide
bond, delete peptide bond.
Tethers ("tz")
Quadratic restraint E= tzWeight *Distance2 between atoms in the current object and static atoms in a
different object (as opposed to distance restraints "cn" between atoms in the same object). The target value
of the distance is zero. See also: read pdb, set tether, term ts , and tether .

Tethers to Self ("ts")
Term "ts" is used in minimization to temporarily tether the atoms specified in the selftether= as_
argument of the minimize or montecarlo command to their initial coordinates. The advantage of this

54 Energy and Penalty Terms

term that you do not need to have any other objects. To self-tether a fraction of atoms, use the
selftether= as_ option of the minimize command.

Example:

 build string "lys"
 randomize v_//x*
 minimize "vw,to,ts" selftether=a_//ca,c,n

See also: TOOLS.tsWeight , TOOLS.tsToleranceRadius , term tz , set selftether,
delete selftether , selftether
Multidimensional variable restraints ("rs")
Energy associated with multidimensional ellipsoidal attraction zones (in which dimension they look like
soft square wells with flat bottom) in a hyperspace of internal variables (e.g. preferred side-chain or
backbone torsion angles). Vrestraints are defined in icm.rst and icm.rs files and are earmarked to be
used in energy calculations (as opposed as for the BPMC) with the rse field (as opposed to rs). Use set
vrestraint energy command to assign vrestraints. Described in Abagyan, Totrov and
Kuznetsov, 1994 (pp. 494,495).
Density correlation ("dc")
Penalty function associated with correlation between the static map (the current map is used by
default) and a virtual map generated from atomic positions on the fly. The dcMethod preference allows
you to choose between several different functional forms of this term:
DC = 1 - Sum(Di - < D >)(Ai - < A >)/(N * Rmsd(D)*Rmsd(A))
and DC = 1 - Sum(Di - < D >)(Ai - < A >)/ N
where Di is the map value, and Ai is the density generated dynamically from atomic positions.
The term has analytical derivatives with respect to the internal coordinates and can be efficiently locally
minimized. By adding this term one can combine energy minimization with the real space fitting into
electron density.

A more detailed description can be found in the dcMethod section.
Crystallographic correlation between Fobs and Fcalc ("xr")
van der Waals grid potential for carbon probe ("gc")
van der Waals interaction between explicit non-hydrogen atoms of an ICM object and a van der Waals
potential calculated on the grid. To calculate this term one needs an ICM object and map named m_gc
which is calculated with make map potential "gc" .. . The calculation also counts the number of
atoms in the area with Evw > 0.8 * GRID.maxVw and stores this number in r_2out .

By default the make map potential "gc" command will create two maps: m_gc map for a carbon
probe, and m_gl map for atoms with the van der Vaals radius larger than 1.8 (e.g. sulphur or phosphorus).
With the "gc" term on both maps will be used.

Note that these two maps, m_gc and m_gl are very similar, but one is calculated for a carbon like probe,
while the other for a sulphur-like probe and, therefore, is an inflated version of the m_gc map.
van der Waals grid potential for hydrogen probe ("gh")
hydrophobic potential ("gs")
electrostatic grid potential ("ge")
Calculates the electrostatic potential contribution from the atoms specified in the make map
potential as_ command. The contributions are calculated by the Coulomb formula with distance
dependent-dielectric constant (4*Dij)
hydrogen bonding grid potential ("gb")

property grid potential ("gp").an atom property term that can carry up to 7 different grid maps. The grid
maps are generated with the make map potential "gp" command and are controlled by the
GRID.gpGaussianRadius parameter. The atom type projection is defined by the set type
property command. The relative weight of each map of the gp term (g1,g2,...) is controlled by the
gpWeights parameters. Term "gp" represents seven maps:

g1 : hydrogen bond donor field•
g2 : hydrogen bond acceptor field•
g3 : sp2 hybridization field•
g4 : lipophilicity field•
g5 : large-size atom field•
g6 : positive and negative charge•
g7 : electronegativity/electropositivity field•

Potential of mean force ("mf" and pmf)
Note that term name is "mf", while icm keyword for some commands is pmf

Energy and Penalty Terms 55

The mean-force "mf" potential was designed as a generic energy term which is calculated for pairs of
atoms according to their pmf-types and inter-atomic distances. The definitions of the pmf-types and
energy-distance dependencies for each contributing pair of atom types can be loaded from a .pmf
pmf-file. To read this file use the following command.

read pmf "icm.pmf" # or any other mf-file

The list of pmf-interacting pairs is calculated dynamically and only the pairs at smaller that vwCutoff
threshold distance are considered. Note: It is important that vwCutoff = 9.5 is used in binding score
evaluation.
There is a preference called mfMethod which controls if the atoms in the same molecule can interract. By
default only intermolecular pairs of atoms are considered (mfMethod = 1). Switching mfMethod to 2
(or "all") allows one to include all atomic pairs regardless of which molecule they belong to in the "mf"
term calculation.
Since this term is quite general one can prepare different pmf-parameter files for solving different
problems. The default file icm.pmf has been derived from receptor-ligand complexes and allows
pmf-scoring of docked ligands. Another file: ident.pmf was designed to specify attraction of the same
atom types and allows one to solve a problem of chemical superposition.
The relative weight of the pmf-term is controlled by the mfWeight parameter.
An example in which we evaluate a binding score:

read object "rec"
read object "anwers1"
move a_2. a_1.
vwCutoff = 9.5
mfMethod = 1
show energy "mf" a_1 a_2
e = Energy("mf")

An example in which flexible superposition of two molecules is performed:

 build string "his ; gly trp" # two molecules
 read pmf "ident.pmf"
 fix v_//omg
 display
 superimpose a_1 a_2
 vwCutoff = 2. # mf uses vwCutoff to calculate lists
 montecarlo "mf" v_2//?vt* | v_//!?vt* # internal variables + positional for the second molecule

See also: mfMethod , pmf-file, mfWeight .

Integer shell parameters
Here is the alphabetically sorted dump of integer parameters defined in the ICM-shell. These parameters
are used by various commands and functions and can be changed interactively, e.g.

 mncallsMC= 10000
 montecarlo

ICM-shell integer variables are the following.

autoSavePeriod

In the course of a montecarlo or ssearch procedures which may run for days, the current stack of
conformations which accumulates the best energy representatives of different conformational areas is saved
periodically to allow access to intermediate results of the simulations. The above parameter defines the
number of stack changes after which it is saved to a disk file. Set autoSavePeriod to 1 if you want to be
conservative.
If you set autoSavePeriod to 0 , the stack will not be saved at all.
Default (10).

56 Integer shell parameters

defSymGroup

defines a crystal space group number. To find the group name and symmetry operations use the
Symgroup function. Default (0) means that the group is not defined.
Examples:

 defSymGroup = 19 # direct assignment. You know group 19, don't you?

 defSymGroup = Symgroup("P212121") # Oh, you do not! ..

 defSymGroup = Symgroup("P61 2 2") # This one you do not remember for sure

i_out

an integer where some commands or functions store their integer output:

Rmsd saves the number of aligned equivalent points;•
Srmsd saves the number of aligned equivalent points;•
convert saves the number of heavy atoms missing from the pdb-template (e.g. atoms of the
flexible lys side-chain are not given in the pdb-file).

•

superimpose saves number of aligned equivalent points;•
set tether saves the number of tethers imposed;•
set drestraint saves the number of distance restraints imposed;•
set vrestraint saves the number of variable restraints imposed;•
make disulfide bond saves the number of imposed disulfide bonds;•
minimize saves the number of function evaluations;•
montecarlo saves the total number of function evaluations during minimization;•
show area skin saves the total number of triangles in the Connolly construction.•

Default (0).

i_2out

the second variable for additional integer output. (see also i_out and I_out)

maxColorPotential

local electrostatic potential in kcal/e.u.charge units at which the surface element is colored by extreme red
or extreme blue. All higher values will have the same color. This absolute scaling is convenient to develop
a feeling of electrostatic properties of molecular surfaces.
If the maxColorPotential is set to 0. the color grob potential command will perform
automated scaling to the absolute maximal value of the potential.

See also: color grob potential, dsRebel , Potential , make grob potential .
Example:

 build string "se glu arg" # dipeptide
 maxColorPotential = 3.
 dsRebel a_ yes
 maxColorPotential = 6.
 dsRebel a_ yes

maxMemory

maximal memory size requested by the program in megabytes. It is used to read blocks of databases in the
search commands. Make sure that this parameter is reasonable. If your maxMemory is larger than what
your computer actually has, expect serious delays. However, usually computers can handle it by swapping
memory onto disk, which can be slow.
Recommendation: divide your available RAM by a factor from 2 to 4. Current memory resources are
reported by the chkdsk command on a PC or by the top command on a UNIX workstation. Do not forget
that ICM itself will additionally allocate some BufferSpace specified in the icm.cfg file.

defSymGroup 57

Default (10.0) Mb

minTetherWindow

maximal number of preceding torsions strictly speaking rigid bodies which are locally minimized during
the chain growth procedure (the minimize tether command) to create an ICM-object with ideal
geometry on the basis of a set of arbitrary atom coordinates (often referred to as the regularization
procedure).
Default (30).

mnSolutions

this parameter limits the number of hits retained by the program after a search. It is used in several
icm-search functions:

find molecule - chemical substructure search•
find pattern - find sequence pattern in sequences of mol. objects.•
find database - advanced sequence similarity search•
align ms_1 ms_2 - alternatives solutions for 3D superposition•
find profile - find protein Prosite profiles in a sequence•
find prosite - find protein Prosite patterns in a sequence•

Default (100).

mncalls

maximal number of function calls in local minimization performed in minimize, and as a part of one step
of a multistep procedure in montecarlo, ssearch, convert . The number of function evaluations
required to find the local minimum varies widely depending on the terms used (i.e. the "tz" term makes
minimization very slow, if structure is far from its target). If the minimum is found according to the
tolGrad criterion, the procedure will be terminated anyway.
Default (100).
See also: minimizeMethod , tolGrad , drop .

mncallsMC

maximal number of function calls in the montecarlo command. Since the procedure performs random
steps accompanied by local minimization (controlled by the mncalls parameter), the number of function
evaluations for the whole procedure can be roughly evaluated as a product of mncalls and the number of
MC iterations. mncallsMC should be sufficiently large to ensure convergence of the global optimization
procedure and may range from 10,000 for a single side-chain, 100,000 for a 3-4 residue peptide to several
million calls for 15-20 residue peptide or a large protein loop.
Default (1000). The default value is small to minimize damage of the unintentional calls of the
montecarlo command.
See also: montecarlo , mncalls .

mnconf

maximal number of conformations in the conformational stack . The stack stops growing after this
number is achieved and starts replacing representative conformations with higher energy values by new
conformations with superior energies, if the latter are found.
Default (50)
See also: montecarlo , ssearch .

58 maxMemory

mnhighEnergy

maximal number of consecutive accepted trial conformations which do not change the conformational
stack because their energies are higher than energies of the stack conformations. Therefore, the
montecarlo procedure is walking in the high energy area and is probably wasting its time. When this
threshold is reached the procedure acts according to the highEnergyAction parameter.
Default (50)
See also: mnvisits , mnreject , stack .

mnreject

maximal number of consecutive rejections (due to the Metropolis criterion) of trial conformations
generated by the montecarlo procedure. When this threshold is reached the procedure acts according to
the rejectAction parameter (which usually increases the simulation temperature).
Default (10)
See also: mnvisits , mnhighEnergy .

mnvisits

maximal number of visits to the same slot of the conformational stack in the course of a montecarlo
procedure. When this threshold is reached the MC procedure acts according to the visitsAction
parameter. A visit is an event when a newly generated conformation finds a slot with a similar
conformation in it, but the stack conformation is not replaced by the new one because it has a better energy.
The optimal mnvisits parameter grows with the size of the problem (it may be several hundred for a 15-20
residue peptide).
Default (50)
See also: mnreject , mnhighEnergy .

nLocalDeformVar

Number of backbone torsion angle variables (excluding omegas) which are changed simultaneously to
provide local deformation. This parameter can be less than the actual number of backbone torsion angles in
the loop. In other words it is OK if the loop contains more than nLocalDeformVar variables, however, if it
contains less than nLocalDeformVar variables, it will not be deformed.
Default (10), minimal number (8).
See also: montecarlo local.

nSsearchStep

number of steps per variable for ssearch . Normally the whole [-180., 180.] range is divided into
nSsearchStep parts. In the local mode (i.e. the search is performed around a particular conformation)
the total search range around each variable is defined by the ssearchStep parameter (30. deg. by
default)
Default (3) .

nProc

This variable can be used as a hint to run an ICM command in parallel if possible. The current list of ICM
commands which supports this option is below:

set charge formal auto•
enumerate tautomer•
learn type="nn"•
Score•
Distance chemical•

Example:

read mol table "big.sdf" name="t"
set charge formal auto nProc=8 # run in 8 threads

mnhighEnergy 59

randomSeed

is a seed used by the random-number generator in the montecarlo , randomize , Random function.
Helpful if you need to reproduce exactly a calculation which uses random number(s). If the variable has its
zero default value, the random function is seeded from the current time plus the process id. Otherwise, if
you explicitly redefine it before, let us say, a montecarlo run, it will use the specified number.
Note that the randomSeed parameter can be set only once in the very beginning of the session. If you
redefine its value in the middle of the session, it will not be used. To push the new value of the seed, use
the set randomize i_newRandomSeed command.
Default (0).
Examples:

 randomSeed=2493059372 # this number you took from the previous run
 montecarlo # simulation will reproduce the previous one

...

 set randomize 2493059372
 montecarlo

segMinLength

secondary structure segments shorter than this threshold will be ignored when a simplified quantitative
representation of the polypeptide fold is constructed using the assign sstructure segment
command.
Default (3).

sequenceBlock

length of the contiguous sequence block in sequence output.
Default (10).
See also: sequenceLine .

sequenceLine

maximum sequence length printed on each line. Usually sequence is additionally subdivided into smaller
blocks.
The same parameter also controls the size of alignment block as saved by the write alignment
command.
Example:

 read alignment s_icmhome+"sh3"
 sequenceLine=1000
 write sh3 "aaa"

Default (60). Values >= 1 .
See also: sequenceBlock

surfaceAccuracy

integer accuracy level used in surface calculations (not graphics) and boundary element electrostatics. By
reducing the level, you can speed up the accessibility calculation in the show area surface
command. It may be important to increase surfaceAccuracy to 5 in the rebel and make
boundary calculations. The corresponding number of dots per sphere is the following:

Level 1 (89 dots)•
Level 2 (144 dots)•
Level 3 (233 dots)•
Level 4 (377 dots)•

60 nProc

Level 5 (610 dots)•

Default (3)
See also: show area surface, "sf" energy term .

windowSize

number of elements used for sliding window averaging by the Smooth function.
Default (7).
Real shell variables
ICM-shell real variables are the following.

addBfactor

additional B-factor which may be added to the current atomic B-values to create a smoother electron
density map from a set of atoms. See also:

make map factor•
make map cell•

Default (0.0)

alignMinCoverage

a threshold for the ratio of the aligned residues to the shorter sequence length. All alignments shorter than
alignMinCoverage*minLength will not be reported by find database command.
The default value is 0.5. However the parameter can be tuned with the respect to the database and the
nature of the query sequence.

Search against the protein domain sequence database: use 0.5 or higher•
Search a multidomain sequence against long multidomain sequences: use 0.1 or lower•

See also: 'alignMinMethod , find database .
Default (0.5)

alignOldStatWeight

a parameter influencing the statistical evaluation of sequence comparison significance in the find
database command.
Statistical significance can be evaluated in two ways: first, a priori, i.e. before the database search and
based only on the individual score of an alignment of interest and its theoretical distribution, or, second, a
posteriori, i.e. on the fly and on the basis of all empirically observed scores of other alignments in the
course of the database search.
The parameter ranges from 0. to 1. and sets how two different statistical criteria of alignment significance,
a precomputed (the old one) and a run-time, should be mixed. Zero corresponds to only the run-time
measure (the new way) in which the significance is evaluated on the run-time statistics of the observed
alignment scores, while one corresponds to the statistics evaluated before the search using the formula from
 Abagyan and Batalov, 1997 . If the database is small then the run-time score statistics may be
incomplete and alignOldStatWeight closer to 1. is a better choice. On the other hand, the run-time
statistics has several principal advantages:

Precomputed statistics (1.) based on individual
alignment score and length

Run-time statistics (0.) based on
distribution of scores

works always relies on database diversity

surfaceAccuracy 61

is trained only in 64 condition sets and ZEGA
alignment

automatically adjusts to any set of
conditions, e.g. gapFunction, or
alignMinCoverage

does not reflect compositional bias automatically reflects all seq. properties

does not reflect extra terms to the score accounts for solvent accessibility correction
(see accFunction)

The run-time statistics will fit the scores to an optimized empirical function. This function avoids the
problems of the normal distribution, and certain pitfalls of a popular EVD function. The resulting P-value is
a reliable estimate of the false positive rate if the database is sufficiently diverse, i.e. the fraction of
sequences similar to the query is small. For example, searching a tyrosine kinase through a database of
tyrosine kinases will yield incorrectly low pP-values (pP = -Log(P)).
Reliable expect-values: P * Nof(sequences) <= 0.1 .
Example:

Swissprot has N=89,000 sequences. LogN = 4.95•
Reliable pP = LogN + 3, twilight pP is from LogN + 1. to LogN + 3.•

axisLength

length (in Angstroms) of the X,Y,Z axes of the coordinate frame. The axes can be displayed by the
display origin or display virtual command. The axes are marked X Y Z . Example:

 build string "ala ala his his"
 display
 axisLength=10.
 display origin

Default (1.5)

clashThreshold

a clash is defined as an interatomic distance less than a sum of van der Waals radii of two atoms of interest
multiplied by the clashThreshold parameter. For hydrogen bonded atoms, the distance threshold is
additionally reduced by 20% .
See also: display clash , show clash, GRAPHICS.clashWidth
Default (0.82)

cnWeight

weighting factor for the interatomic distance restraints penalty term. See also: tzMethod ,
drestraint and Bfactor .
Default (1.0)

consensusStrength

a real parameter between 0. and 1. controlling the percentage of sequence identity in an alignment column
required to establish a consensus. This parameter r is applied to the C0 parameters defined in the
CONSENSUS table according to this formula:

C = C0 + (100-C0)*2*(r-0.5)

The 0.5 value corresponds to the percentage in the table. Default (0.5)

62 alignOldStatWeight

dcWeight

weighting factor for the density correlation term "dc".
Default (1.0)

COLOR.bg : background color in 3D graphics

user preference for the background color (overwrites icm.clr preference) E.g.

 COLOR.bg = "grey"
 write system preference

See also:

COLOR.distanceAtom•
COLOR.labelAtom•
COLOR.labelResidue•
COLOR.labelSite•
COLOR.labelVar•

COLOR.distanceAtom : default colors of interatomic
distances

interatomic distance is shown by a dotted line of this default color. These colors and styles can be
changed individually.

COLOR.label... default colors of labels.

COLOR.labelAtom : atom labels•
COLOR.labelResidue : residue labels•
COLOR.labelSite : site labels•
COLOR.labelVar : variable labels•

they overwrite the colors specified in icm.clr

CONSENSUS_strength

regulates the strength of consensus modifying the CONSENSUS.fraction values. The CONSENSUS table
controls the rules of consensus derivation from an alignment . This table may look like this:

#>T CONSENSUS
#>-symbol------fraction----residues---
 A 80 A
 C 90 C
 D 85 D
 d 60 ND
...
...

The CONSENSUS_strength (denoted S) parameter can increase or decrease the fraction values f
according to the following formula: f1 = f + (100-f)*(S-0.5) Therefore if S = 1. all fraction values become
equal to 100% . This affects the Consensus function and the GUI representation of alignment consensus
in ICM versions above 3.0.
To color structures according to the consensus, use the color alignment rs_command, or,
interactively, left-click on a color icon and select Color_By followed by alignment.
Default (0.5)

densityCutoff

The neglected fraction of the total atomic electron density in the course of calculation of the grid electron
density from atomic positions. Atomic density distribution is approximated by two Gaussian functions
which need to be truncated for computational efficiency. See also:

dcWeight 63

make map cell command and related operations with the electron density,•

Default (0.1)

dielConst

dielectric constant of the solute used in Coulomb, distance-dependent, MIMEL, and boundary element
electrostatic calculations. If electroMethod="distance dependent" the actual dielectric
constant is a product of dielConst and a distance from a change.
See also: dielConstExtern, term "el"
Default (4.0)

dielConstExtern

dielectric constant of the solvent exterior used in MIMEL and boundary element electrostatic
calculations.
Default (78.5)

drop

expected initial function drop in local minimization. The parameter is used to evaluate initial step size.
If your function is already very close to its minimum, it is a good idea to reduce the parameter, otherwise
the procedure will start with an inappropriately large step.
Default (10.0)

fogStart

relative Z-depth with respect to the front clipping plane at which fogging starts. With this parameter you
can keep some area in front without any fog and than start gradually increasing the effect until the back
clipping plane.
To activate fog use Ctrl-D , or click on the FOG GUI button, or use the display volume command.
Clipping planes can be moved with Ctrl-MiddleMB (front plane) and MiddleMB - left 5% margin (back
plane). Actually the mapping of these operations to particular keystrokes is flexible and is defined in the
icm.clr file. For Linux it is useful to redefine the back-clipping plane movements to

 mode 9 Right5-Mid # Move rear clipping plane

Right5 means that you use the 5% right margin of your window.
Usually the fog color is the same as the background color. You can change the fog color with the
color volume Color
command. From the command line the fog can be switched on and off with the display volume and
undisplay volume command

The value of fogStart is saved and restored as a system preference. If its value is negative, the fog is not
activated, if the value is a positive number between 0. and 1., ICM sets the fog flag on.

Default (0.3)

gapExtension

Relative gap extension penalty used in an alignment procedure. The absolute gap penalty is calculated
as a product of gapExtension and the average diagonal element of the residue comparison
table
Default (0.15)
See also gapFunction , Align .

64 densityCutoff

gapOpen

Relative gap opening penalty used in an alignment procedure. The absolute gap penalty is calculated as
a product of gapOpen and the average diagonal element of the residue comparison table You
may vary gapOpen between 1.8 and 2.8 to analyze dependence of your alignment on this parameter. Lower
pairwise similarity may require somewhat lower gapOpen parameter. A value of 2.4 (gapExtension=0.15)
was shown to be optimal for structural similarity recognition with the Gonnet et. al.) matrix, while
a value of 2.0 was optimal for the Blosum50) matrix (Abagyan and Batalov, 1997).
Default (2.4).
See also gapFunction , Align .

gpWeights

the rarray of seven weighting factors for the property grid penalty term in the energy function.

Example:

 gpWeights = Rarray(7, 1.) # seven weights of 1. each

See also:

set type property # setting atom type contributions•
make map potential "gp" .. # generating up to seven grid maps.•
term "gp"•

hbCutoff

(Angstroms) cutoff radius for hydrogen bonding interactions.
Default (3.0)

lineWidth

the real width of lines used to display the wire representation of chemical bonds. See also
IMAGE.lineWidth parameter which controls line thickness in molecular images generated by the
write postscript command, and the PLOT.lineWidth which controls the width for the plot
command.
Default (1.0)
Example:

 build string "se nad" # NAD molecule
 lineWidth = 3.
 wireStyle="chemistry"
 display

See also: GRAPHICS.grobDotSize , GRAPHICS.grobLineWidth , GRAPHICS.mapLineWidth
, IMAGE.lineWidth , PLOT.lineWidth , PLOT.gridLineWidth .

listUpdateThreshold

the real maximal displacement of an atom during local minimization which triggers the recalculation
of the interaction lists. This mechanism can be suppressed by setting the l_updateLists variable to no

See also: l_updateLists , minimize .

Default (1.5)

gapOpen 65

mapSigmaLevel

(in Rmsd values over the mean value). Margin value used for making graphical objects contouring
the 3D density map .

See also: map
Default (1.5)

mapAtomMargin

Margin in Angstroms around selected atoms. The margin is added to the positional boundaries to define a
submap index box in the Map (map_source , as_) function.

Default (3.0)

mcBell

average relative size of normally distributed montecarlo step from the center of an ellipsoid surrounding
the multidimensional variable restraint zone.
Example:

 mcBell = 1.0 # places one standard deviation at the rs border
 mcBell = 2.0 # distribution is two times broader etc.

Default (1.0)

mcJump

maximum value (in degrees) of random angular distortion per variable during a stack action (as opposed to
mcStep that is a part of a regular random step). The mcJump local random perturbation occurs if
visitsAction, highEnergy or rejectAction ICM-shell variables are set to "random" .
Randomization is a possible action in three problematic situations in montecarlo procedure.
Default (30.0)

mcShake

amplitude [Angstrom] of Brownian type the montecarlo random move applied to a molecule when one
of the 6 variables defining its relative position is picked. Usually these variables may be selected by
v_myMolecule//?vt*selection. The center of mass of the molecule randomly moves in an xyz
sphere of mcShake radius. The molecule is also randomly rotated around a random axis with an amplitude
equal to mcShake divided by the MolecularRadius . This parameter is also used as a default amplitude for
the randomize command where the six position/orientation variables are selected.
Default (2.0)

mcStep

montecarlo step size (degrees). Maximum random change of one variable. This parameter is also used
as the default amplitude for the randomize command
Default (180.0)

mfWeight

the overall weighting factor for the "mf" penalty term. This term may contain any user-defined energy or
penalty function depending on pairs of atom types and interatomic distances. The parameters for the term
are stored in the icm.pmf file and loaded with the read pmf s_pmfFile command.
The weighting factor will determine the "mf" term contribution with respect to the energy terms.
See also: "mf" term, cnWeight, dcWeight, rsWeight, ssWeight, tzWeight, ssWeight,
gpWeights .

66 mapSigmaLevel

Default (1.0)

mimelDepth

The fraction of an estimated molecular radius which is taken as a radius of the probe sphere used by the
MIMEL algorithm. The accessible surface of this probe sphere is used to calculate the distance between a
charge and the effective dielectric boundary. Described in detail on p. 991-992 of (`ato94{ Abagyan and
Totrov, 1994}). For small molecules mimelDepth = 0.3 is recommended.
See also:

mimelMolDensity•
electroMethod•
show area•

Default (0.5).

mimelMolDensity

a coefficient used to calculate the effective molecular radius from a number of atoms. Recommendation: do
not touch it, unless you are an advanced user. See also the description of the MIMEL method.

See also:

mimelDepth•
electroMethod•

Default (1.0).

r_out

a real variable where some commands and functions (e.g. show area, show volume, superimpose,
minimize tether, Corr , Axis , Align) store their output. Also, in the electrostatic calculations
with the MIMEL or REBEL method, the solvation energy part of the electrostatic energy is returned in
r_out.
Default (0.0). See also: r_2out.

r_2out

a real variable where some commands and functions (e.g. Axis) store their output.

Some r_2out outputs:

Align or align : for 2 sequences: percent sequence alignment identity•
Axis(R_12transform) : helix rise in•
Energy(rs simple) : rmsd of normalized residue energies•
convert : maximal positional deviation upon conversion•

Default (0.0). See also: r_out .

resLabelShift

is the translation towards the viewer (normal to the graphics screen) used to display a label in front of
cpk's or skin's rather than bury the label under them. The recommended value is 4. See also:
resLabelStyle
Default (0.0) to be used with more popular wire representation.

mfWeight 67

rsWeight

weighting factor for the multidimensional variable restraints penalty term.
Default (1.0).

selectMinGrad

default minimal gradient vector length for gradient atom selection (a_//G). This parameter is also used by
the montecarlo fast command, which requires a value of 2. to 10. for optimal performance.
Example:

 read pdb "1fox"
 convertObject a_ yes no yes no
 show energy
 selectMinGrad=80.
 show a_//G
 display
 display a_//G cpk

Default (1.5).

selectSphereRadius

default sphere radius (in Angstroms) for atom selections in Sphere() function, as well as the Gaussian 3D
averaging radius in the color ribbon command with ribbonColorStyle="reliability".
This parameter is also used in the compare surface command.
Default (5.0).

sfWeight

the overall weighting factor for the surface solvation energy term. If surfaceMethod is "constant
tension" it can also be controlled by the surfaceTension parameter.
Default (1.0).

shininess

parameter defining the shininess of solid surfaces such as cpk, ribbon, ball, stick, xstick, and
skin when they are displayed. Only values in the range [0.,128.] are accepted.
Example in which we generate a high quality CPK image:

build string "ASDW"
GRAPHICS.quality = 15.
shininess = 100.
display cpk

Default (20.0). Range: from 0. to 128.

ssThreshold

threshold distance between two Sg atoms of cysteine residues. This distance controls the automatic
formation of disulfide bonds in some commands (e.g. read pdb).
Default (2.35).

ssWeight

weighting factor for the disulfide bridge ("ss") penalty term.
Default (1.0).

68 rsWeight

ssearchStep

angular increment (in degrees) for variables in the systematic search (ssearch command) in so called
"local" mode when the search is performed around the current conformation.
Default (30.0).

surfaceTension

surface energy density in kcal/mole/A2. The surface energy which is a product of this parameter by the total
solvent accessible area will be stored in the "sf" term, if surfaceMethod preference is set to
"constant tension" .
Note, that if a part of the system is represented with grid potentials, one needs a special m_ga grid map for
correct calculations of the surface accessibilities.
Default (0.012)

tempLocal

montecarlo simulation temperature for local deformation random moves. This temperature can be set
higher than the normal temperature since a local deformation includes a larger number of variables and
may require a higher temperature for efficient sampling. To set the same simulation temperature, specify:
tempLocal=temperature
in your script.
Default (5000.).

temperature

montecarlo simulation temperature. A new trial conformation with a higher energy than the current one
is accepted with the probability of exp(-(Etrial - Enew)/RT)). RT is 0.6 kcal/mole for T = 300 Kelvin.
The effect of temperature on the montecarlo procedure is the following:

to find the global minimum successfully one needs a combination of persistence if a chosen place
with a good sense of when to stop searching in this place and move along to the next one.

•

if the temperature is too high, the acceptance ratio improves (gets higher) and wider sampling
becomes easier since more high energy conformations are accepted. The downside of this is the
low "persistence" (or "lack of patience") of the search procedure. Instead of spending more time in
each conformational vicinity to find the real global minimum, the procedure just tries a couple
of sub-optimal conformations and jumps away.

•

if the temperature is too low the procedure may not cover the global conformational space of
interest.

•

* tempCycle (need to create a variable with that name) If you want to set a cooling temperature schedule,
or even a periodic PCR-like temperature schedule, you can define a new rarray array called tempCycle
which contains { tempMax, tempMin, period, phase } . For a simulated annealing schedule, set the period
to be twice the value of the mncallsMC parameter. Tcurr = 0.5(T1 + T2) + 0.5 ∆T cos(2π (phase + x /
period)), x = [0:1]

tempCycle = {10000.,600.,2.,0.} # the whole period is 2 times longer than the simulation
it will start from t=10000. finish at about 600.
montecarlo

Default (300.).

timeLimit

the real running time of ICM in hours (wall time) before a long simulation is interrupted. This limit can
interrupt a montecarlo procedure (another exit condition is mncallsMC),
Example:

timeLimit = 2. # two hours
montecarlo # will interrupt the simulation in 2 hours

ssWeight 69

Default (99999.0).

tolGrad

gradient tolerance criterion for local minimization. Minimization is stopped if the gradient
root-mean-square deviation from zero is less than the parameter value.

See also: tolFunc , mncalls , minNumGrad , l_updateLists , listUpdateThreshold .
Default (0.05).

tolFunc

exit criterion for local minimization by looking at the amplitude of the function value decrease during
the last four steps of minimization. Minimization is stopped if the function does not decrease more than the
parameter value during the last four steps. The negative value means that this criterion is ignored. All
criteria, namely tolGrad, mncalls and tolFunc , are checked simultaneously.

See also: tolGrad , mncalls , minNumGrad , l_updateLists , listUpdateThreshold .
Default (-0.01).

tzWeight

the overall weighting factor for the tether penalty term. You may need to increase it while minimizing a
highly energetically strained molecule resulting from the initial steps of the conversion or
regularization procedure. Additional atom specific weights can be introduced through atomic
bfactors with tzMethod="weighted"

See also: TOOLS.tsWeight , term ts
Default (1.0).

vicinity

maximum angular root-mean-square deviation per variable (degrees) or cartesian root-mean-square
deviation per atom (Angstroms) when two structures are still considered belonging to the same
conformational family in conformational stack manipulations. The type of comparison is defined by the
compare command.
Examples:

 compare a_//ca,c,n # compare by Cartesian RMSD
 vicinity = 3.0 # conf. are similar if RMSD< 3 A

 compare v_//phi,psi # compare by angular RMSD
 vicinity = 40.0 # conf. are similar if aRMSD < 40 deg

Default (15.0) . Do not forget to set it to a lower value if Cartesian RMSD is compared.

vwCutoff

(Angstroms) cutoff radius for van der Waals interactions and Coulomb electrostatics .
Default (7.5).

vwExpand

radius of a probe sphere used to display a dotted surface of a molecule. All van der Waals radii are
expanded by this value. vwExpand=0 corresponds to the CPK surface, vwExpand=1.4 corresponds to the
water-accessible surface. Be aware of the difference between the waterRadius , vwExpand and
GRAPHICS.surfaceProbeRadius parameters: The waterRadius parameter is used in

70 timeLimit

show energy "sf"•
show [area|volume] skin•
display skin•

while vwExpand is used in

show [area|volume] surface•
Xyz(as_ r_distance surface) # sampling points above the surface•

and GRAPHICS.surfaceProbeRadius is used in

display surface
Default (1.4).

vwExpandDisplay

Obsolete. Replaced by GRAPHICS.surfaceProbeRadius . See also:
GRAPHICS.surfaceDotDensity, GRAPHICS.surfaceDotSize

vwSoftMaxEnergy

Parameter defining maximal energy value of van der Waals repulsion at r -> 0. for the finite approximation
van der Waals function (vwMethod = "soft"). This parameter must be greater than 0. kcal/mole.
Note that in the "soft" mode, the electrostatic energy will be automatically buffered to avoid singularities.
You will see that the electrostatic term "el" changes upon switching from vwMethod=1 to
vwMethod=2 .
Default (7.0).

waterRadius

radius of water sphere which is used to calculate an analytical molecular surface (referred to as skin) as
well as the solvent-accessible surface (centers of water spheres). Because of the complexity of skin
calculations, it is not recommended that one play's with this parameter (of course, you rushed to do exactly
that). Be aware of the difference between the waterRadius and vwExpand parameters:
waterRadius is used in

show energy "sf"•
show [area|volume] skin•
display skin•

while vwExpand is used in

display surface•
show [area|volume] surface•

Default (1.4).

wireBondSeparation

the distance between two parallel lines representing a chemical double bond if wireStyle =
"chemistry".
Default (0.15 Angstroms).

vwExpand 71

xrWeight

the overall weighting factor for the structure factor correlation penalty term. See also:
xrMethod .
Default (1.0).
Logical variables
ICM-shell logical variables are the following.

l_antiAlias

if yes, invokes anti-aliasing for lines displayed in the graphics window. This feature is not supported on all
the platforms.
Default (no).

l_autoLink

if yes, tries to link molecules and alignments/sequences automatically. In case of degeneracy, i.e. identical
sequences exist with different names, a molecule can be linked to two different alignments containing its
sequence etc., the autolink procedure chooses the first occurrence. Use the link command to impose links
explicitly, and the show link command to see them. Links can be used by the following commands and
functions:

superimpose•
Rmsd and Srmsd•
set tether ali_ ...•

Default (yes).

l_bpmc

if yes, use Biased Probability Monte Carlo moves in the Monte Carlo procedure. See Abagyan
and Totrov, 1994 for reference. Important: the probability zones are described in the icm.rst file
and should be assigned to a peptide before the montecarlo command with the
set vrestraint a_/*
command.
Default (yes).

l_breakRibbon

if yes, break too the ribbon if the distance between the reference atoms is larger than
GRAPHICS.ribbonGapDistance

Default (yes).

l_bufferedOutput

if no, suppresses pagination in the output of ICM commands (including the show command). Useful in
batch jobs.
Default (yes).

l_bug

if yes, print some debug information
Default (no).

72 xrWeight

l_caseSensitivity

active in most commands and functions using string comparisons.
Default (no).

l_commands

if no, do not show commands in batch mode
Default (yes).

l_confirm

if no, overwrite the contents of an existing file; ask permission to overwrite it otherwise.
Default (no).

l_easyRotate

allows faster handling of images in the graphics window. If yes, then the currently displayed solid
representations (e.g., ribbon, skin, cpk, etc.) are temporarily hidden if an operation like rotation or
translation is undertaken. Only the wire representation remains allowing quick manipulation with the
object in use. The previous type of display is restored when rotation or translation is completed. The
parameter can be toggled by a keystroke if you assign the l_easyRotate = !l_easyRotate with
the set key command.
Default (no).

l_info

if yes, print info messages
The default value is yes.

l_minRedraw

if no, suppresses redrawing of a displayed structure at each minimization step. The new minimized
structure will be redrawn only at the end of minimization. Useful when the graphics is slow or the structure
is heavy.
l_neutralAcids

Several commands such as read mol, read mol2, build smiles and set bond auto include
automated assignment of aromatic systems as well as some resonance structures in O-C=O, O-S=O, PO3,
O-N=O, and NO3. The automated conversion invoked with the l_readMolArom variable set to yes
reassigns the bonds in the group to be equivalent. For the acidic groups it leads to the charged form with
two partial charges of -1/2 or -1/3. If you want to suppress this transformation for the CO2,SO2 and PO3
groups only set the l_neutralAcids flag to yes . In this case the acidic groups will be kept
unchanged.
Example:

 l_neutralAcids = yes
 read mol s_icmhome+"ex_mol.mol"
 wireStyle=2
 display only a_ # the acidic group is uncharged
 build hydrogen

Default (no).
See also: l_readMolArom,`read-mol{read mol}, read mol2, build smiles and set bond
auto.

l_bug 73

l_out

a logical variable similar to i_out and r_out .
Default (yes).

l_print

if yes, show print command with arguments as well as the result of its action.
Default (no).

l_racemicMC

Activate switching between stereoisomers at chiral centers during montecarlo . This flag can also be
dynamically activated with the chiral option of the montecarlo command. To reset the chirality
status of an atom use the set chiral command
Example:

build string "se nter his cter"
set chiral a_/his/ca 3 # set chirality flag to 3 (means a racemic mixture)
unfix V_//FC # unfix phases for stereoisomeric rearrangements
compare a_//*
vicinity = 1.

l_racemicMC = yes
montecarlo v_//!?vt* # will switch between stereoisomers

display
display atom label type=6 # to see the isomers
now you can browse the stack solutions

l_readMolArom

if yes, automatically assigns aromatic rings and resonant structures (CO2,SO2,PO3,NO2,NO3) from
patterns of single and double bonds upon reading objects, mol and mol2 files or build from smiles. The
automated assignment module is also called by the set bond auto command.
If this flag is set to no , the build hydrogen command will have problems with resonant structures,
such as carboxyl groups, - a hydrogen will be attached to the oxygen connected with a single bond to the
carbon.
Example of a recommended best conversion procedure for chemical library files:

 l_readMolArom = yes # it is the default, but just in case
you also want to use l_neutralAcids = yes
 read mol s_icmhome + "ex_mol"
 for i=1,Nof(object)
 build hydrogens # may have problems if l_readMolArom = no
 set type mmff # also improves the aromatic system assignment
 set charge mmff
 convert # makes an ICM object
 endfor

Default (yes).
See also: l_neutralAcids which allows one to keep acidic groups unchanged and uncharged.

l_showAccessibility

show the residue accessibility string assigned to a sequence generated from a three dimensional structure
in the commands show sequence , show alignment, write alignment . The relative residue
accessible area is expressed by an integer number in a scale from 0 to 9 (0-fully buried, 9-fully exposed).
Example:

 read pdb "1crn"
 show surface area # calculate atomic and residue accessibilities
 make sequence a_1 # generate a sequence
 l_showAccessibility=yes

74 l_out

 show 1crn_m

Default (yes).

l_showMC

display one-line info about each Monte Carlo trial conformation.
Default (yes).

l_showMinSteps

display every step of the local minimization procedure.
Default (no).

l_showResCodeInSelection

if yes, shows one-letter code for amino-acid residues in residue selections, e.g. a_/^F12:^A23 instead
of a_/12:23 . The amino-acid code is preceded by a caret symbol ^. In versions older than 3.1 the
amino-acid code was not shown.
l_showSpecialChar

if yes, displays unprintable characters with the show string and list string commands in text
format (like \a \t \n). This flag does not apply to the print command.
Default (no).

l_showSites

show the site string assigned to a sequence in the commands show sequence, show alignment,
write alignment. The one-letter site codes are given below.
Default (yes).

l_showSstructure

show the secondary structure string assigned to a sequence in the commands show sequence, show
alignment, write alignment.
Default (no).

l_showWater

if yes, all water molecules are shown in the output of commands such as show molecule or show
a_* . Set it to no to skip the usually long lists of water molecules in PDB structures.
Default (yes).

l_showTerms

Obsolete. Now you can achieve the same via s_icmPrompt variable.
Examples:

 s_icmPrompt = "icm/%o/%e> " # equivalent to l_showTerms=yes

l_updateLists

if yes, updates the atomic interaction lists during minimization once the maximal displacement
reaches listUpdateThreshold . The interaction lists are lists of atom pairs involved in van der Waals,
electrostatic or hydrogen bonding interactions and within the vwCutoff or hbCutoff distance. If this

l_showAccessibility 75

parameter is set to no , the lists are not recalculated. To trigger a recalculation, use the

delete list

command.

Default (yes).

l_warn

if yes, print warning messages. If you want to see warning messages (i.e. l_warn = yes), but suppress
some of the messages, use the s_skipMessages variable (e.g. s_skipMessages =
"[147][148]") .
Default (yes).

l_wrapLine

wrap long lines if yes. If no truncate long lines and add a dollar sign ($) to indicate that truncation has
occurred.
Default (yes).

l_writeStartObjMC

write the starting object in the montecarlo command to a file. This object will have the same fixation
(set of free and fixed variables) as in your montecarlo simulation. In case the variable is set to no, the same
object can be generated if you repeat the fix and unfix command as in your simulation script.
Default (yes).

l_xrUseHydrogen

defines whether hydrogen atoms are used in calculations of crystallographic structure factors from atom
coordinates (the term).
Default (yes).
String variables

System string variables are predefined in the shell. New string variables can be created via assignments,
e.g.

a = "What took you so long?"
txt = """
Once upon a time some evil dwarfs
filed a patent claiming the right to
paint shirts blue color
"""

, or the read string command or a function returning a string (e.g. a = String(2.3)) or created
by a command as one of the output variables, eg s_out.

s_alignment_rainbow

This variable now controls how alignments are colored automatically by properties like conservation or
entropy. For example:

s_alignment_rainbow = "pink/white/white/lightyellow/yellow/yellowgreen/green"

Note: this variable does not influence the consensus-based coloring via tables CONSENSUSCOLOR and
CONSENSUS

76 l_updateLists

s_blastdbDir

return directory with Blast-formatted sequence files for ICM sequence searches. By default the directory is
set to the $BLASTDB system shell variable. The variable can also be explicitly defined in the
user_profile.icm or _startup file. In order to start using the $BLASTDB shell variable, delete
explicit assignment of the s_blastdbDir from your _startup file or add

s_blastdbDir=Getenv("BLASTDB")

to your ~/.icm/user_startup.icm file.
The find database family of sequence/pattern search commands use the s_blastdbDir directory.

s_editor

a string to invoke an external editor.
Attention!!! Always use the call to the program which starts the program in the foreground. For example:
use "jot -f" rather than just "jot", since the default is running in the background.
Examples:

 s_editor = "vi" # good old vi, does not require a separate window
 s_editor = "jot -f" # popular SGI editor
 s_editor = "xedit" # simple and exists for X on every platform
 s_editor = "notepad" # exists for PCs

s_entryDelimiter

a string which delimits entries in the database output of a table or a set of arrays, generated by the
show database or write database commands. The %i specification at the end will be replaced by
the current number of the entry and carriage return.
Default: ("#____________________________ %i")
Example:

 s_entryDelimiter="//\n" # EMBL-database delimiter

s_errorFormat

defines the exact appearance of the ICM error messages. Specification %s corresponds to the minimal ICM
error message. If %s is missing all error messages are reduced to the specified text. If s_errorFormat is
equal to the empty string (""), all error messages will be suppressed. If icm is started in the "web" mode
(i.e. with the -w path flag), the variable is automatically set to "<hr><h3>Error: %s</h3><hr>" .
Examples:

 s_errorFormat="" # do NOT print error messages
 s_errorFormat=" Error> %s" # standard error messages
 s_errorFormat=" Erreur> %s" # French version
 # html-padding
 s_errorFormat="<hr><h3>%s</h3><hr>"
 s_errorFormat=" Fehler> der Betrieb ist verboten"
 # replace all the messages by this text

s_fieldDelimiter

contains characters which are considered as field delimiters by the Field and Split functions, as well as
by read column and write table commands. In "Split" and "read table" one can also specify the
field delimiter explicitly.
Important. If a character is duplicated in s_fieldDelimiter (e.g. s_fieldDelimiter="::"), then
multiple occurrences of this character will be ignored. Otherwise, EMPTY fields will be created between
each pair of identical delimiter characters.
In write table s_fieldDelimiter is honored only if is a one-letter symbol, like "," or "\t".
See also the opposite operation, merging members of string array into one string: Sum(S_, s_separator)
Examples:

 s_fieldDelimiter="\t" # "aaa\t\t bbb" splits into "aaa",""," bbb"
 s_fieldDelimiter="\t\t" # "aaa\t\t bbb" splits into "aaa"," bbb"

s_blastdbDir 77

Default (" \t\t" i.e. two blanks, two tabs, meaning skip multiple blanks or tabs). Another reasonable
possibility is " \t\t\n\n" which means skip blanks,tabs and carriage returns.

s_helpEngine

path to the HTML help file browser program. If you have no HTML browser, the default setting is
s_helpEngine="icm", so you can use the simple internal ascii help-file viewer more filter ('q' - to
stop, '/' to find a string, 'Enter' - next screen). If the desired help information is not found, just type help and
then use '/' plus the search pattern to perform the context search in the whole help file.
Examples:

 s_helpEngine="/usr/bin/netscape"
 s_helpEngine="mozilla" # make sure you can start it in the UNIX shell
 s_helpEngine="icm" # why would one need more?

s_icmhome

defines the home directory of the ICM program. This directory contains all standard ICM databases, all
scripts, examples, documentation, initial configuration files (later users can override them with the files
stored in the s_userDir directory.
The Linux icm-rpm package creates s_icmhome in /usr/icm directory.

s_inxDir

defines directory from which icm - index files for large sequence or chemical databases are stored. This
variable is used by the write index command. By default s_inxDir is set to s_icmhome +
"/data/inx/" .
See also: read index , write index .
s_icmPrompt

defines the ICM-prompt string. This string contains text and a bunch of wild cards for:

%o - name of the current molecular object•
%e - list of the active energy terms (see the set terms command)•
%t - time spent in ICM (may be convenient for scripts)•
%T - astronomical Time•
%% - % character•
%# - icm-command order number•

Be smart, see the energy or penalty terms you are using by adding %e to the prompt string.
Examples:

 s_icmPrompt="%## " # for minimalists
 s_icmPrompt="" # for super-minimalists
 s_icmPrompt="%T> " # for anxious paranoiac freaks
 s_icmPrompt="MY_ICM/%o/%e/%T/%#> " # for the verbose
 s_icmPrompt="Hi-hi|%e-^%o+%T> " # for the messy
 s_icmPrompt="Icm command number %#> " # for the retarded
 s_icmPrompt="Hey dude, type something" # for dudes
 s_icmPrompt="%o/%e> " # for humble and wise researches

Default: "icm/%o> "

s_imageViewer

defines the command to view the image files (tiff, png, targa and rgb formats) if the display
option is specified. An alternative to the default is the "xv" program. See also the write image
command.
Default for SGIs ("imgview").

78 s_fieldDelimiter

s_javaCodeBase

path to the folder containing java applet class files. Java applets are currently used by the web or write
html commands with a chemical table.
Default: "/Java/"

s_labelHeader

defines a prefix string for all labels. For example, when displaying CPK atoms you may move the label to
the right of the atom center by

 s_labelHeader=" "

Default ("" - an empty string).

s_lib

ICM library name root. If you redefine it to say "new", ICM will start to look for the following library files:
new.cod, new.bbt, new.bbs, etc. in the $ICMHOME directory.
Default ("icm").

s_logDir

when you quit an icm-session, a _seslog.icm file is automatically stored. If the s_logDir variable is
empty, it is stored to the s_userDir + "/log/" directory. However one can redirect it to the current
working directory (".") or any other directory.
The same logic applies to the _crashlog.icm file which is created when ICM crashes.
Examples:

s_logDir = "." # _seslog.icm stored in the current working directory
s_logDir = "" # to the current working directory

s_out

a string where some commands store their string/text output. See also: printf read database read
string, read table, and read unix,
Default ("is where the string/text is stored").

s_pdbDir

directory containing the PDB database of 3D structures and defining the location of the pdb files for the
pdbDirStyle from 1 to 5 (the ftp and http styles are controlled by a different variable). These files can
also be easily downloaded directly from the PDB site if the variables are set as in the example below. PDB
distributions can exist in several styles (all files in the same directory, or divided etc.). The style is defined
by the pdbDirStyle preference.
The pdb directory also contains the derived_data subdirectory with useful files (pdb sequences, index
files etc.)

Attention! Note that if the pdbDirStyle is set to 6 or 7 this variable is NOT USED. Variables
s_pdbDirFtp and s_pdbDirWeb are used instead! (it was hard coded until version 3.5-2)
Example:

 s_pdbDir ="ftp://ftp.rcsb.org/pub/pdb/data/structures/divided/pdb/"
 pdbDirStyle = "ab/pdb1abc.ent.Z"

 s_pdbDir = "/data/pdb/"
 read sarray s_pdbDir+"/derived_data/index/source.idx"
 source = Tolower(Trim(Field(source,1)))
 for i=1,Nof(source)
 read pdb source[i]
do some analysis
 delete a_*.

s_javaCodeBase 79

 endfor

Default ("/data/pdb/"). It is usually redefined in the _startup file.

s_pdbDirFtp

If pdbDirStyle is set to 6 (for the ftp access), the location of the ftp site is controlled by this variable.
Example:

pdbDirStyle=6
s_pdbDirFtp = "ftp://ftp.rcsb.org/pub/pdb/data/structures/divided/pdb/" # an old site
read pdb "1crn"

s_pdbDirWeb

If pdbDirStyle is set to 7 (for the http access), the location of the web site and the request format is
controlled by this variable. Example:

pdbDirStyle=7
s_pdbDirWeb = "http://www.rcsb.org/pdb/files/%s.pdb.gz" # an old web site
read pdb "1crn"

s_projectDir

a relative path to the directory in which icm-projects (all the icm-objects in a session) are stored. This path
is appended to the s_userDir directory.
s_printCommand

a command to print text or postscript files. This command is invoked if the print option is specified in
the write image postscript or write postscript commands. Customize this string. Default
("lp -c").
Example:

 s_printCommand = "lp -c -d ColorPrn22"
 write image postscript print # save image and print

s_prositeDat

is a file containing the full file name of the prosite database of protein patterns. This file is not large and
is distributed with ICM. If you have your own copy of prosite, redefine the variable and delete prosite.dat
in the $ICMHOME directory to avoid redundancy.
Default ("prosite.dat"). It is usually redefined to s_icmhome+"prosite.dat" in the
_startup file.

s_psViewer

a PostScript viewer used while you are in ICM session. A command to invoke is to be:

 unix $s_psViewer </tt><i>your PostScript file name</i>

Default is system specific.

s_reslib

name of the icm residue library that contains discriptions of chemical residues. The file will be
loaded from the $ICMHOME directory.

80 s_pdbDir

To create a new residue use the write library command.
Default ("icm").

s_skipMessages : ignore specific error messages

In ICM all error and warning messages are numbered (e.g. " Warning> [123] .. "). You may
specify a set of message numbers which you want to suppress. While the messages are suppressed the error
code can still be returned with the Error(number) function.
Example:

 a = 1
 if = 2 # deliberately generate error
 Error> [2073] illegal IF: wrong condition in if=2

 s_skipMessages = "[2073]"
 if = 2 # now no message is generated
 if Error(number)==2073 quit

 a = yes # generates another error
 Error> [696] wrong assignment or name conflict
 s_skipMessages = "[2073][696]"
 a = yes # hides the error message

 234*2352352532
 Warning> [147] number 2352352532 is too big for an integer (>2147483647)
 0
 s_skipMessages = "[2073][696][147]" # suppress the warning
 234*2352352532
 0

See also: errorAction , s_errorFormat .
Default ("[3000][3012]" just to show an example).

s_sysCp

automatically filled out string containing the copy file command for the current operating system. It is
advised to use this variable in scripts for cross-platform portability.

s_sysLs and s_sysLtt

automatically filled out string containing the list file command (or list files sorted by modification time)
for the current operating system. It is advised to use this variable in scripts for cross-platform portability.
Example:

sys $s_sysLs # to list files in the current directory
sys $s_sysLtt # to list files in the current directory

s_sysMv

automatically filled out string containing the move or rename file command for the current operating
system. It is advised to use this variable in scripts for cross-platform portability.

s_sysRm

automatically filled out string containing the delete or remove file command for the current operating
system. It is advised to use this variable in scripts for cross-platform portability.

s_tempDir

scratch directory for temporary files (some montecarlo files will be saved there).
Default ("/usr/tmp/").

s_reslib 81

s_translateString

a set of characters used in the ascii representation of numerical values of arrays, matrices and maps. See
also the String function and the show map command.
Default (".:*0#").

s_userDir

The path to the user directory containing ICM-related and ICM-generated data files.
The suggested _startup file sets this variable to a subdirectory .icm of the user $HOME directory (
$USERPROFILE for Windows), but you may set it anywhere you want.
Default ("$HOME/.icm/").

s_usrlib (obsolete)

an obsolete variable. The new mechanism to add new icm residue libraries uses the
LIBRARY.res sarray. You can generate the entries using the write library command.
Default ("usr").

s_webEntrezLink

defines the NCBI Entrez link.
See also: webEntrezOption, Default (
"http://www3.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=s&form=6&uid=%s&Dopt=%c").

s_webViewer

An obsolete variable. Web browser is defined by OS default.

s_xpdbDir

path to the ICM XPDB database root of compact binary ICM objects which are annotated with the site
information. The root directory contains pdb-style subdirectories with named after the 2nd and 3rd
character of the four-letter code. The advantage of the XPDB database is the speed of reading and smaller
size than PDB. XPDB entries are read about hundred times faster!

Here we compare the execution times for the pdb and xpdb files:

eos:/home/ruben/icm> time ./icm -s -e 'read object "/data/xpdb/1ffk.ob"'
0.450u 0.090s 0:00.54 100.0%
eos:/home/ruben/icm> time ./icm -s -e 'read pdb "/data/pdb/ff/pdb1ffk.ent.Z"'
38.800u 0.430s 0:42.11 93.1%

An xpdb directory can be in a remote location, e.g.

s_xpdbDir = "http://ablab.ucsd.edu/xpdb/"
read binary pdb "1crn"

Preferences
Preferences inside the shell are multiple choices (the outside persistent parameters are in
~/.config/Molsoft.conf , see preference system) . You can show and list them. You can change a
preference by assigning it to:

the item number•
the item name•
"nextItem" string•
0 (the same as "nextItem")•

82 s_translateString

Examples:

 resLabelStyle = 3 # 3-rd choice
 resLabelStyle = "Ala 5" # assign by string
 resLabelStyle = "nextItem" # go to the next item in the list

Preferences are temporarily redefined just for one command , if specified after the command, e.g.

minimize v_//x* electroMethod=2

The ICM preferences can be divided into two groups:

persistent, - the ones which user can modify and write with the write system preference
parName command. The location of the resulting file depends on the Operating System:

Unix: ~/.config/Molsoft.conf♦
Mac: /Library/Preferences/com.molsoft.plist♦
Windows: windows registry♦

Example: GRAPHICS.chainBreakLabelDisplay

•

non-persistent: if you need to change them inside a script or in your user_startup file.•

The persistent parameters can be found in the GUI menu under Preferences. The ones which are not on
that menu, are non-persistent.

See also: preference system for the location of the file with modified user preferences and
commands/ways to change them

Persistent Preferences

The preferences can be divided into persistent and non-persistent as described above. The
non-persistent (like TOOLS.tsToleranceRadius) need to be changed in a macro or script when
needed. The persistent ones can be searched and changed from the interface (the File.Preferences menu)
or directly in a file between the ICM sessions for Unix and Mac. From the command line one can change
the preference and issue the write system preference prefName command.

User preferences in Linux.The user preferences (a subset of all preferences that can be modified in ICM)
can be modified by the user from the GUI (Menu File/Preferences). The modified preferences are then
stored in the ~/.config/Molsoft.conf file. You can modify those preferences manually provided
there are no open ICM sessions. Also, if you want to restore the defaults, simply delete the lines in question
in Molsoft.conf.

User preferences on a Mac.

open /Library/Preferences/com.molsoft.plist # or
rm /Library/Preferences/com.molsoft.plist # or

See also: FAQ

User preferences on a Windows box:are stored in registry and can-not be easily viewed with a text editor
(need registry viewer).

See also: write-system-preference command.

accessMethod

Defines if the show area surface command calculates absolute or relative solvent accessible area for
each atom. This area can be stored as absolute value in square Angstroms or relative value from 0. to 1. and
can be returned by the Area(as_) function. Note that this preference does not work for residues. To
calculate the relative residue area use the Area(a_/*)/Area(a_/* type) ratio of functions.

"absolute surface" "relative surface"1.
"multByAccMap"2.

Example:

Preferences 83

show area surface a_1 a_1 accessMethod = 2 waterRadius=1.4
color a_1//* Area(a_1//*) # returns numbers from 0. to 1.

The third method ("multByAccMap") uses m_ga map in a straightforward manner, just multiplies the
atomic accessibilities by the map value. m_ga map is supposed to have values from 0. to 1.

alignMethod

alignment method used in the Align and Score functions and find database command (as
described in Batalov and Abagyan, 1999).

"ZEGA"1.
"H-align" <- the best choice2.
"frame-H-align" # align DNA sequence against protein sequence or protein sequence database3.

See also:

gapFunction,•
accFunction,•
alignMinCoverage (0.5) - minimal ratio of the aligned residues with respect to the shorter
sequence length.

•

atomLabelStyle

style of atom labels invoked by clicking on an atom or the display atom label as_ command. You
may display name, electric charge (q) and/or mmff atom type. Options are the following:

"cb1" <== default1.
"cb1 q" (atomic charge)2.
"cb1:FC" (formal charge and chirality)3.
"cb1 all" (different atomic properties)4.
"cb1 mmff q"5.
"C" (chemical atom name for non-H and non-C atoms, formal charge and chirality)6.
"[C]" (chem. name, formal charge and chirality on a rectangle)7.

The last two choices use periodic table convention to label atoms, and the label is positioned into the center
of atom. In the latter case ("[C]") a rectangle of the background color is used to highlight the label. Be
careful since in the latter case the selection mark (green cross) is hidden.
Examples:

 build string "se his"
 atomLabelStyle = "[C]"
 wireStyle = "chemistry"
 lineWidth = 3.
 display atom label wire black # press Ctrl-A
 color background white
 write postscript "tm" # save the results

 atomLabelStyle = "C"
 display xstick
 set type mmff # press Ctrl-A again

atomSingleStyle

display style of isolated atoms in the wire mode.

"tetrahedron"1.
"cross"2.
"dot"3.

The size of the first two representation is controlled by the GRAPHICS.ballRadius parameter and the
line width (especially important for the "dot" style) is controlled by the lineWidth parameter.

84 accessMethod

cnMethodAverage

method of calculating an effective distance for NOEs between groups of protons This multi-center NOEs
can be set with the

set drestraint all as_group1 as_group2 i_Type

command. Two methods are available.

 cnMethodAverage = "R6"
 1 = "R6" <-- current choice
 2 = "nR6"

The first mode calculates effective distance r as r=(1/N Sum(r^-6))^-1/6, where N is n1*n2.The
second mode calculates effective distance as r=(Sum(r-6))^-1/6 Depending on the number of
protons in each group, the difference in the effective distance may differ from 12 to 34%.

compareMethod

This method is usually set by the compare command. The last two methods perform chemical
equivalency matching.

 compareMethod = "variables"
 1 = "variables" <-- current choice
 2 = "atoms static"
 3 = "atoms superimposed"
 4 = "atoms interface"
 5 = "chemical static"
 6 = "chemical superimposed"

All methods except the first one ("variables") will use atom selection. Example:

 compare a_LIG.
 compareMethod = 5
 montecarlo

dcMethod

defines the algorithm for the density correlation calculation which is the correlation between the
static density distribution and a virtual map generated from atomic positions on the fly.

"exact" <- default1.
"unnormalized"2.

Explanation:

The "exact" density correlation penalty function uses the Pearson's correlation coefficient. The
correlation coefficient is then shifted by +1 so that the function ranges from 0. to 2. rather than
from 1. to -1. DC = 1 - Sum(Di - < D >)(Ai - < A >)/(N * Rmsd(D)*Rmsd(A)) The term
has analytical derivatives with respect to the internal coordinates and can be efficiently locally
minimized. This term requires additional memory allocation equal to the current map size and
is two times slower than the unnormalized term.

1.

The "unnormalized" density correlation. Formula: DC = 1 - Sum(Di - < D >)(Ai - < A >)/ N
where Di is a map value in point i , and Ai represents the density generated dynamically from
atomic positions. The differences from the "exact" term are the following:

scaling is arbitrary in contrast to "exact" term. Therefore you have to estimate a
reasonable dcWeight value if "dc" is optimized along with the other energy or penalty
terms.

♦

The "unnormalized" term does not require additional memory and is two times
faster than the "exact" term. The term has analytical derivatives with respect to the
internal coordinates and can be efficiently locally minimized.

♦

2.

cnMethodAverage 85

electroMethod

defines method used for the electrostatic energy evaluation. Four options are available:

"Coulomb"1.
"distance dependent" <- default2.
"MIMEL"3.
"boundary element"4.

The meaning:

The Coulomb electrostatics is defined as U = q1 *q2 /D*r12 with D = dielConst .1.
In the distance-dependent dielectric model D in the above formula is set to dielConst*r, where
r is an interatomic distance.

2.

The "MIMEL" electrostatics allows one to evaluate the free energy of a molecule in water
environment by the Modified IMage ELectrostatics approximation at every iteration
of the Monte Carlo, or search procedure. This energy will only be calculated for a static
structure or at the end of local minimization (so called "double energy scheme", see Abagyan
and Totrov, 1994 section (e) on p.992, or Abagyan, Totrov and Kuznetsov,
1994 p. 10, for reference).). The MIMEL energy consists of the Coulomb energy, which is
calculated for all the atom pairs at the current dielConst value, and the electrostatic solvation
energy which is a sum of "selfEnergy" and "crossEnergy" and is returned in the r_out real
variable upon completion of the calculation in the show energy command. A more accurate
evaluation of the electrostatic solvation energy can be obtained with the boundary element
method.

3.

The boundary element method provides an accurate solution of the Poisson equation. The
dielectric boundary is defined by the accurate analytical molecular surface (skin)
and all the local charges stay exactly where they are. The boundary element method does not rely
on any 3D grid and is free from dependence on the grid size. The ICM implementation of the
boundary element method is fast and accurate. During the local minimization the derivatives
with respect to the internal coordinates are not calculated (similar to the MIMEL method). The
distance dependent dielectric model is used during minimization instead. At the end of the local
minimization the electrostatic energy is replaced by the more rigorous boundary element
energy.

4.

errorAction

action taken after an error has occurred.

= "none" # error flag is set (see the Error() function)1.
= "break" <- default # exit from loops and macros2.
= "exit" # exit from a script into shell3.
= "quit" # quit ICM: useful for CGIs4.

Specific error messages can be suppressed with the s_skipMessages (e.g. s_skipMessages =
"[696][2073]")
See also: s_errorFormat, interruptAction

exitSessionStyle

Together with s_logDir controls where and what session files are saved upon exit/quit from ICM.

exitSeslogStyle = "full seslog" by default.

= "none" # no files are saved1.
= "full seslog" = "user session" # only user commands saved to session.icm2.
= "both" # both files are saved3.

This parameter can be redefined and saved to user preferences.

86 electroMethod

ffMethod

force field used in the show energy, minimize, and montecarlo commands.

= "ecepp" <- default1.
= "mmff"2.
= "icff" an experimental force field obtained by re-parametrization of the mmff force field into the
internal coordinate space and derivation of the parameters specific for a particular covalent
geometry.

3.

= "icmff" a new forcefiled (Arnautova,Abagyan,Totrov, Development of a new physics-based
internal coordinate mechanics force field and its application to protein loop modeling. Proteins.
2011 Feb;79(2):477-98.). To activate it run the set_icmffmacro.

4.

Note that minimize cartesian temporarily enforces ffMethod = "mmff", since the ecepp force field
is not applicable to the cartesian minimization.
To use the force fields you need to do the following:

"ecepp"
read library (if it is not included in your _startup.icm file)♦
modify terms with the set terms command.♦
use show energy , minimize, or montecarlo.♦

•

"mmff" in cartesian space (free covalent geometry). The command requires at least the
"vw,af,bb,bs" terms and needs correct atom types and charges.

read library mmff♦
assign atom types: set type mmff a_ . This operation requires correct♦

•

chemical structure (when you build the molecule, make sure it is complete),•
bond types (check graphically with wireMethod=2, and change with the set bond type
command), and

•

formal charges (check graphically with the atomLabelStyle=3, and assign with the set
charge formal .. command).

assign charges: set charge mmff a_♦
modify terms with the set terms command. The full set is: set terms
"vw,el,to,af,bb,bs"

♦

use show energy , minimize, or montecarlo.♦

•

"mmff" in the internal coordinate space according to the current fixation. The use of the mmff
force field is not recommended.

•

"icmff". This new force field is designed to be used with the fixed covalent geometry and is faster
than both mmff-cartesian and "ecepp". The icmff force field is still experimental and should be
used with caution. The vacuum part of icmff requires only three terms: "vw,to,el". The solvation
terms "sf,en" can be added. Icmff calculates parameters on the fly for a particular geometry. To
use this force field use the following procedures:

•

assign mmff types and charges, and load the mmff libraries (see above)•
to generate the starting conformation, minimize your molecule with ffMethod = 2 and
minimize cartesian "14,to,bb,bs,af" .

•

set ffMethod to 3 and set terms ""vw,to,el,sf,en" only .•
use show energy or montecarlo•

gcMethod

method defining how the m_gc map is used in the "gc" grid energy calculation. The "gc" method allows
one to calculate interactions of a molecule with grid energy field representing another molecule (the first
method), or treat the m_gc map as the electron density map. To see individual atomic contribution, use
show energy atom command which places individual energies in the bfactorfield with a 20 unit offset.

"vw" <- default choice: current object interacts with the van der Waals field. Positive values
repel, negative attract; Contribution from one non-hydrogen atom is Eatom = 1.*Egc

1.

"density" : treats the m_gc map as positive electron density and pulls the object into it. The
contributions of atoms are proportional to atomic number (the number of electrons), hydrogens are
ignored: Eatom = -AtomicNumber*Egc

2.

"field" : uses user-defined atomic field value, which can be set by the set field
command and extracted with the Field (as_) command, as the relative weight of each atom.
Anticipates that van der Waals type of the map (attractive negative values, repulsive positive) as in
the first method. Eatom = Field(atom)*Egc

3.

exitSessionStyle 87

highEnergyAction

action taken upon achievement of the maximal allowed number of montecarlo steps resulting in no
modification of a stack mnhighEnergy , (it means that conformations are dissimilar to those in the stack
and have higher energy). Four actions can be taken:

"heat"1.
"stack-jump" <- default2.
"random"3.
"exit"4.

interruptAction

action taken upon ICM-interrupt (^\ Control backslash).

= "break loop"1.
= "break all loops" <- default2.
= "exit macro"3.
= "exit to the main macro"4.
= "exit all macros"5.

mfMethod

atom pair selection algorithm used when "mf" energy term is calculated by the show energy,
montecarlo, or minimize commands.
Allowed values:

"intermolecular" (or 1) <- default•
"all" (or 2)•

(e.g. mfMethod = 2)
In contrast to the "vw" term, only intermolecular atom pairs are considered by default, since usually
intramolecular interactions are calculated with the standard energy terms.
In the "all" mode the atom pairs are taken from the van der Waals interaction lists calculated
dynamically in the show energy, montecarlo, or minimize commands. All atom pairs except
atoms separated by 1 or 2 bonds (so called 1-2 and 1-3 interactions) and within the vwCutoff distance are
taken into account.
See also: term "mf", pmf-file, mfWeight .

minimizeMethod

algorithm used for local energy minimization which takes place in the minimize command, and is a
part of one step of a multistep procedure such as montecarlo, ssearch, and convert .
Allowed values:

"conjugate"1.
"newton"2.
"auto" <- default3.

"conjugate" means conjugate gradient minimization. Uses analytical first derivatives and takes 6*
n_free_variables memory.
"newton" - quasi-Newton method. It uses analytical first derivatives and takes
n_free_variables*n_free_variables memory. We recommend this method for energy minimization of small
molecules.
"auto" <- default; use the more efficient quasi-Newton if the number of free variables (Nof(v_//*) is less
than 100 (additional memory requirement of about 2 MB) and switch to the conjugate gradient method if
the number of free variables is more than 100.

88 gcMethod

pdbDirStyle

The style of your Protein Data Bank directory/directories. ICM will understand all of the listed styles,
including distributions with compressed *.gz , *.bz2 and *.Z files. In all cases, if the s_pdbDir variable is
set correctly, it is sufficient to refer to the file by its four-character code, e.g.
read pdb "1abc"

"1abc.pdb"1.
"pdb1abc.ent" "ab/pdb1abc.ent"2.
"ab/pdb1abc.ent.Z"3.
"ab/pdb1abc.ent.gz"4.
"PDB website"5.

Do not forget to set the right pdb-style in your _startup file.

rejectAction

what to do, if the MC procedure rejects mnreject trial conformations in a row. Four actions can be taken:

" heat" <- default choice1.
" stack jump"2.
" random"3.
" exit"4.

resLabelStyle

style of residue labels invoked by double clicking on the residue or display residue label rs_
command. Possibilities:

"A5" <- default choice1.
"Ala 5"2.
"ALA 5"3.
"Ala"4.
"ALA"5.
"Alanine 5"6.
"5"7.
"A"8.
" A"9.
"Mol" - displays MOLECULAR name.10.

See also : resLabelShift, atomLabelStyle .

ribbonColorStyle

- sets the ribbon coloring scheme.
1 = "type" default. colors by secondary structure type or explicit color
2 = "NtoC" colors each chain gradually blue-to-red from N- to C- (or from 5' to 3' for DNA)
3 = "alignment" if there is an alignment linked to a protein, color gapped backbone regions gray
4 = "reliability" 3D Gaussian averaging with selectSphereRadius of alignment strength in space
If ribbonColorStyle equals to 4, the conserved areas will be colored blue, while the most divergent
will be red, and the intermediate conservation areas will be colored white. Example:

 nice "1eoc.a/"
 make sequence a_1.1
 read pdb sequence "3pcc.a/"
 aa = Align(3pcc_a 1eoc_a)
 ribbonColorStyle=3 # color gaps gray
 color ribbon
 ribbonColorStyle=4 # see alignment strength
 color ribbon

pdbDirStyle 89

ribbonStyle

specifies type of representation when display ribbon
command is used. Options are the following:

"ribbon" <- default choice1.
"cylinders"2.
"pencils"3.
"numbers"4.

The first choice is a solid ribbon representation.
cylindersThe second representation draws alpha-helices as cylinders. There are two modes depending on
the value of the GRAPHICS.ribbonCylinderRadius parameter. If
GRAPHICS.ribbonCylinderRadius is set to zero, the automated radii fitting and helical splitting is
engaged. If a helix is too curved, ICM tries to split it into more straight helices. The radius of a helix
depends on the helical curvature and is calculated to include all C atoms. Therefore, wide cylinders contain
more curved helices.

Alternatively if GRAPHICS.ribbonCylinderRadius has a certain non-zero value, this radius will be
used.

One can break a helix in any place with the assign sstructure command. (e.g. assign
sstructure a_/182 "_" to break a helix by residue 182).
The third and the fourth, "pencils" and "number" refers to a style where secondary structure elements are
represented by vectors (see Abagyan and Maiorov, 1988).

Note The segment parameters must be pre-calculated with the assign sstructure segment
command. The last option ("both") will display both representations of the backbone topology.

sequenceColorScheme

defines the color scheme selection which is used to color alignment in ICM. The following preferences are
defined:

"no color"1.
"residue type"2.
"icm-combo"3.
"consensus strength"4.
"greyscale"5.

The actual color table containing the correspondence between colors, residues and consensus symbols is
stored in the CONSENSUSCOLOR table. The strength of the consensus is regulated by the
CONSENSUS_strength parameter. The last three preferences are illustrated below.

90 ribbonColorStyle

shineStyle

defines how solid surfaces of cpk , skin and grobs reflect light. Possibilities:

"white" <- default1.
"color"2.

The first option gives a more shiny and greasy look.

surfaceMethod

defines how the surface energy is calculated. Options available:

"constant tension"1.
"atomic solvation" <- default choice2.
"apolar"3.
"membrane"4.

Explanations:

"constant tension" means that the energy terms are just the product of the total
solvent-accessible surface by the surfaceTension parameter. This term is
intended to represent the surface energy if electrostatics takes the solvent polarization
energy into account (see electroMethod)

1.

"atomic solvation" option is designed to evaluate the solvation energy purely on the basis
of the atomic accessible surfaces instead of using the proper electrostatic evaluation of
the polarization free energy. This fast but approximate scheme was proposed by Wesson and
Eisenberg, (1992) . Atomic surface parameters derived from the experimental
vacuum-water transfer energies are given in the icm.hdt file.

2.

"apolar" option is designed to evaluate the stabilization energy, which is the difference
between denatured and folded states. The "atomic solvation" energy should be used with the van
der Waals term while the "apolar" energy takes it into account and should be used without any
other energy terms. The "apolar" atomic surface parameters were derived from the experimental
octanol-water transfer energies and are given in the icm.hdt file.

3.

"membrane" option allows one to have a heterogeneous environment with shapes that are
'membrane-like' and shapes with water. The geometrical parameters and shape types are defined
by the TOOLS.membrane real array. Depending on where an atom is found inside or outside the
lipid shape the implicit solvation parameters will be taken from the 7rd column or the 3rd column
of the icm.hdt file.

4.

Note, that if a part of the system is represented with grid potentials, one needs a special m_ga grid map for
correct calculations of the surface accessibilities.

The method used to correct the accessibility values by the m_ga map can be modified with the
accessMethod preference. If accessMethod = 3 , the atom accessibilities are multiplied by the m_ga
value in the vicinity of the atom.

See also:

accessMethod•
accessMethod•

sequenceColorScheme 91

tzMethod

method of imposing and calculating tethers. The three alternatives are the following

"simple" : equal weight tethers to 3D points1.
"weighted" : individual weights are calculated from atomic B-factors by dividing 8*PI2 by
the B-factor value. All the weights additionally are multiplied by the tzWeight shell variable.

2.

"z_only" : tethers are imposed only in the Z-direction towards the target Z-coordinate. These
type of tethers pulls a molecule into a z-plane. This may be useful if you are trying to generate a
flat projection of a three-dimensional molecule.

3.

"function" : tethers can take a form of distance restraints with individual weights, upper and
lower bounds. The three parameters are controlled by the following properties of the target atoms
(not the source atoms as in the "weighted" case): individual weights are directly taked from
bfactor values, the upper bounds from the area fields, and the lower bounds from the
charge field. To set those values, use the set bfactor, set area and set charge
commands respectively. Example:

 build string "se ala"
 copy a_ tether "tz"
 a_//T # movable source atoms
 a_//Z # static destination atoms
 Select(a_ "tz") # also, the destination atoms
 set bfactor a_tz.//* 3. # weight of each tether
 set area a_tz.//* 2. # no penalty within 2A radius around each atom
 set charge a_tz.//* 0. # the lower bound of 0. (can also create repulsion).

applying linear force to atoms: to exert a constant force to an atom, set the formal charge of the
target atom to a special value of 5. The b-factors will continue to serve as individual force
constants and the direction of force will correspond to the vector from the origin to the target
pdb-atom with this special value of formal charge.

4.

Example for the "z_only" method in which we generate a more or less flat image of a chemical.

build smiles "c1c(ccc(c1)N(=O)=O)N2CCC(CC2)=CC(=O)NNC(=O)Nc3cc(ccc3)C(F)(F)F"
tzMethod = "z_only"
set tether a_ # sets tethers to x,y,z=0. coordinates for each atom
minimize "vw,tz" 200
dsChem a_//!h*

#linear force. Use interface to set the linear force flag (formal charge) and bfactors
copy a_ "tzcopy"
tzMethod = "function" # will use bfactor and formal charge features of a_tzcopy. atoms
set tether a_/1/ca a_tzcopy./1/ca # drag the target atom where you want
set charge formal a_tzcopy./1/ca 5. # number 5. signals ICM to interpret it as linear force
set bfactor a_tzcopy./1/ca 5000. # the force constant
set tether a_/1/cb a_tzcopy./1/cb # combine with normal tethers.
display tether a_
minimize v_//?vt* "tz"

varLabelStyle

style of labels for free torsions, angles and bonds (i.e. internal variables) display variable label
vs command. Possibilities:

"greek" <- default choice1.
"name"2.
"value"3.
"energy"4.
"rings only"5.
"value only"6.

visitsAction

what to do, if one stack conformation is overvisited, i.e. mnvisits has been reached. The following
actions are allowed:

92 tzMethod

"random"1.
"heat" <- default choice2.
"stackjump"3.
"exit"4.

Explanation of actions:

"heat" - double the simulation temperature•
"stackjump" - jump to the conformation of the least visited slot in the stack.•
"random" - randomize all free variables according to the mcJump parameter•
"exit" - exit the MC procedure•

vwMethod

specifies the function type of the van der Waals term ("vw"). The following three functions can
be chosen:

"exact" <- default choice: Fvw = A/r12 - B/r6 . This is the usual van der Waals formula tending
to infinity at r close to 0.

1.

"soft": Fsoft = Fvw , for Fvw <= 0. and Fsoft = Fvw *(t/(t+Fvw)) for Fvw > 0. (repulsion). This
form preserves the function for the most populated part of the curve but smoothly reaches the limit
t (defined by the vwSoftMaxEnergy real system variable)

2.

"old soft": another smooth approximation with the finite value at r=0, depending on the well
depth.

3.

webEntrezOption

defines how to interpret the NCBI Entrez links.

"none"1.
"g:GenPept" <- default2.
"r:Report"3.
"f:FASTA"4.
"a:ASN.1"5.
"d:Entrez document summary"6.
"m:MEDLINE links"7.
"p:protein neighbors"8.
"n:nucleotide links"9.
"t:structure links"10.
"c:genome links"11.

See also: s_webEntrezLink, web, show html, write html.

wireStyle

style of the display wire mode. The choices are the following:

"wire" <- default choice1.
"chemistry"2.
"tree"3.

Style "chemistry" shows different types of chemical bonds. Style "tree" shows a directed graph of the
ICM-molecular tree. Yellow triangle indicates the entry atom of an ICM object. The tree can be rerooted
with the write library a_newEntryAtom command. The topology of the complete tree including
the virtual atoms can be shown with the display virtual command.
Note: The "tree" graph does not exist for objects of non-ICM type, e.g. those created by the read pdb
command, and this preference will have no effect. The tree representation elucidates the ICM topology
graph imposed on molecules and is crucial in the modify command, since it removes a branch up-tree
from the specified entry atom, and replaces it by another branch. Use Ctrl-W to toggle between these
styles (see set key command). The line width is controlled by the lineWidth parameter.

visitsAction 93

xrMethod

The penalty function of correspondence between observed and calculated structure factors.

"corr Fc:Fo" <- default1.
"corr Fc2:Fo2"2.

Tables
The following predefined icm-shell tables are collections of different icm shell objects related to a
certain topic. Note that these tables (as opposed to user-defined ICM tables) usually only have the
header section. You can show and list them. You can also change any table element by the usual icm
assignment:
Examples:

 IMAGE.color = yes # this member is a logical
 IMAGE.stereoBase = 2.5 # redefine real distance between stereo panels

CONSENSUS

The consensus symbol is established if the percentage of specified residues in a give column exceeds the
fraction given in the 2nd column. In rows were we provide two symbols (e.g. "-n"), the first (e.g. '-') is used
in alignment representations, while the letter form of this symbol (e.g. 'n') is used in residue selections, (e.g.
a_/Cn) The first matched consensus condition takes precedence. In an example below, if Q is found in
more than 85% or sequences, its consensus symbol is Q, if the percentage is between 60 and 85, the symbol
becomes q, and if no consensus is establish, the symbol becomes the dot character ('.').

#>T CONSENSUS
#>-symbol------fraction----residues---
 A 85 A
 C 85 C
 Q 85 Q
...
 d 60 ND
 -n 70 ED
 +o 60 RK
 gj 60 G
 q 70 Q
 p 60 P
 t 60 TSN
 "#h" 85 WLVIMAFCYHP
 %f 65 WLVIMAFCYHP
 " g" 85 -

See also: CONSENSUSCOLOR , CONSENSUS_strength , color alignment rs_ ,
ribbonColorStyle .

CONSENSUSCOLOR

contains coloring schemes of residues according a multiple sequence alignment (see the align command).
This table is saved together with the GUI preferences. Residue color is defined by two factors: its type, as
listed in the first column of the table, AND the consensus character under which this residue is aligned. The
consensus symbols are defined by the CONSENSUS table and are listed in the third column of the
CONSENSUSCOLOR table that is loaded from the $ICMHOME/CONSENSUSCOLOR.tab file. In this
scheme the same residue can be colored differently depending on the alignment in a current position.

#>T CONSENSUSCOLOR
#>-residue-----color-------symbols----
 * * * # separator between sections
 ED "#ff0000" "-EDp" # E and D residues will be colored red under '-','E' or 'D'
 KR "#0000ff" "+KRp"

See also: CONSENSUSCOLOR , CONSENSUS_strength , color alignment rs_ ,
ribbonColorStyle , set color.

94 wireStyle

FILTER

contains filters which can be applied to the input stream in the read command. Components have names
corresponding to standard file name extensions; their string value is a unix filter. Token %s is a
placeholder for the file name. The provided defaults can be redefined in your _startup file. You can also
add your own extensions and filters by doing the following:

 z = "pcat %s" # define the action for the unix packed files
 group table append FILTER header z # append new filter to the structure

The mechanism ICM employs allows one to keep the transformed files intact and avoid creating temporary
files when possible (e.g. uuencode unix command always creates an output file). Existing extensions and
defaults are given below. You may need to redefine the defaults by adding the exact path to the utility or
using alternatives.

FILTER.Z

allows you to read the compressed files (*.Z) directly leaving the compressed file intact. The default value:
"zcat %s" . If you do not have zcat utility, try
FILTER.Z = "uncompress -c %s"

FILTER.gz

The default value is "gunzip -c %s" .

FILTER.uue

The default value is

"sed 's:begin .*:begin 600 /tmp/UUPtm:' %s | uudecode && cat /tmp/UUPtm && rm -f /tmp/UUPtm"

This works for UNIX file system, write your own on the PC, if needed.

FTP

table which controls reading from ftp.

FTP.createFile

(default no). This flag is not active yet. The file is always created in the s_tempDir directory.

FTP.keepFile

(default no). If yes, the temporary file is kept in the s_tempDir directory. Otherwise the file is deleted.

FTP.proxy

string name of the proxy server for ftp connections through firewall. Default: "" (empty string).

String format: ftp.proxy.host.com[:port]

HTTP.proxy

string name of the proxy server for http connections through firewall. Default: "" (empty string).

String format: [user[:pass]@]http.proxy.host.com[:port]

CONSENSUSCOLOR 95

HTTP.ignoreProxyDomains

string with ';' separated list of domains where HTTP.proxy should not be used.

Example:

HTTP.ignoreProxyDomains = "localhost;*.molsoft.com" # local host + everything which ends with .molsoft.com

GRAPHICS

display parameters for different graphics representations.

GRAPHICS.atomLabelShift

a non-negative integer number of spaces preceding an atom label. This parameter is useful for displaying
labels next to a solid representation, such as xstick or cpk.

See also: GRAPHICS.resLabelShift Default (0)

GRAPHICS.atomValueCircles

GRAPHICS.atomValueCircles allows one to display a circle with a positive value on every atom for those
atom fields:

= "none"1.
= "field"2.
= "b"3.
= "occupancy"4.
= "area"5.

The radius of the circle and the value tranformation upon changing hydrogen display is defined as follows:

"field" shown as is, the values from undisplayed hydrogens are accumulated•
"b" radius is the b-factor value divided by a 100.•
"occupancy" shown as is•
"area" radius is the b-factor value divided by a 40., the values from undisplayed hydrogens are
accumulated

•

The Escape button resets the preference to "none".

Example:

show surface area a_
set area a_//n* 100. # just to show that it can be custom set as well
GRAPHICS.atomValueCircles = "area"
display new

GRAPHICS.ballRadius

radius (in Angstroms) of a small ball displayed as a part of ball or xstick graphical representations
of a molecule.
Default (0.15)
GRAPHICS.ballStickRatio

A default ratio of ball and stick radii. This ratio is applied when the styles are switched from the GUI xstick
toolbar.
Default (1.4)

96 FTP

GRAPHICS.clashWidth

relative width of a displayed clash . This parameter can be changed from the
File/Preferences/DisplayGeneral menu.
See also: lineWidth , GRAPHICS.grobLineWidth , GRAPHICS.hbondWidth ,
GRAPHICS.mapLineWidth , lineWidth .
Default (1.)

GRAPHICS.chainBreakStyle

controls how missing residues in a missing protein fragment are displayed (in ribbon style). Now the
gaps can be ignored or shown as ribbon bullets. Thus, available choices are the following:

= "none" # nothing is displayed1.
= "bullets" # gap is show as bullets, the number of bullets depends on the number of missing
residues

2.

The gaps are labeled according to the GRAPHICS.chainBreakLabelDisplay parameter.

Individual treatment of the chain gap display.The ribbon chain break display can also be suppressed at
the molecular level with the set property "nobreaks" command, e.g.

set property "nobreaks" a_1

See also:

GRAPHICS.chainBreakLabelDisplay•
ribbon•

GRAPHICS.chainBreakLabelDisplay

controls how the number of missing residues in a missing protein fragment is displayed (usually as a
ribbon). ICM tries to draw one bullet for each missing residue. In the auto mode the label is displayed
only if the number of bullets is different from the number of missing residues.

= "none" # the label is not shown1.
= "all" # the label is always shown.2.
= "auto" # shows label if N bullets != N missing residues3.

See also: GRAPHICS.chainBreakStyle

GRAPHICS.cpkClipCaps

preferences to control the way the cpk spheres are being displayed when cut by a clipping plane.

= "none"1.
= "stencil" = "explicit"2.

Both capping methods have some side effects and slow down the graphics performance. User discretion is
advised. See also:

GRAPHICS.displayLineLabels

enables/disables the display of edge lengths (inter-point distances) of a grob generated with the Grob(
"distance" ..) function. This parameter can be changed from the File/Preferences/DisplayGeneral
menu.
See also: Grob ("distance" ..)
Default (yes)

GRAPHICS 97

GRAPHICS.displayMapBox

controls if the bounding box of a map is displayed (see display map).
Default (yes)

GRAPHICS.dnaBallRadius

DNA bases in ribbon representation are shown as balls controlled by the above real parameter. You can
undisplay them with the: undisplay ribbon base command.
Default: 1.5

GRAPHICS.dnaRibbonRatio

real ratio of depth to width for the DNA ribbon .
Default: 0.3

GRAPHICS.dnaRibbonStyle

GRAPHICS.dnaRibbonStyle = "complex shapes" a method of schematic/simplified representation
of DNA or RNA in which the bases are shown as:

= "ball"1.
= "flat shapes"2.
= "complex shapes"

GRAPHICS.dnaRibbonWidth

real width (in Angstroms) of the DNA ribbon .
Default: 2.

GRAPHICS.dnaRibbonWorm

logical which, if yes, makes the DNA backbone ribbon round, rather than rectangular.
Default: no

GRAPHICS.dnaStickRadius

real radius of the sticks representing bases in DNA ribbon .
Default: 0.72

GRAPHICS.formalChargeDislplay

a preference regulating the formal charge visualization of the visible atoms:

= "none" : do not display formal charges1.
= "all" : label all formally charge atoms2.
= "integer only" : skip fractional formal charges3.
= "ligand only" : do not display charges on polymers, display them only on 'hetatm'
compounds

4.

See also:

GRAPHICS.occupancyDisplay♦

3.

98 GRAPHICS

GRAPHICS.grobDotSize

default radius of a dot/vertex in a grob.

See also: lineWidth , GRAPHICS.grobLineWidth

Default: 3.0.

GRAPHICS.grobLineWidth

relative width of displayed lines of 3D meshes (grobs). Also affects the interatomic distance
display. This parameter can be changed from the File/Preferences/DisplayGeneral menu.
See also: lineWidth , GRAPHICS.clashWidth , GRAPHICS.hbondWidth ,
GRAPHICS.mapLineWidth .
Default (1.)

GRAPHICS.hbondStyle

determines the style in which hydrogen bonds are displayed. Here hbond-Donor, Hydrogen, and
hbond-Acceptor atoms will be referred to as D, H and A, respectively,

 GRAPHICS.hbondStyle = "dash"
 1 = "dash" # the default choice. Just a line
 2 = "length" # show the D-A distance in addition
 3 = "length and angle" # show both the distance and the 180. - <D-H.. A> angle

The best possible value for a non-linearity angle is 0. . The display dialog has a small button to roll
through this preference. See also: GRAPHICS.hbondWidth .

GRAPHICS.hbondRebuild

This preference determines if the Graphics user interface (GUI) hbond button will display
hydrogen bonds dynamically (the bonds will change as the coordinates change), or a parray of
pairwise distances will be generated separately. It also regulates if intramolecular bonds are
suppressed.

"static"1.
"dynamic"2.
"intermolecular"3.

Intermolecular bonds imply the static method.

See also:

make hbond♦
display hbond♦
Table(distobj distance)♦

GRAPHICS.hbondMinStrength

GRAPHICS.hbondMinStrength parameter determines the hbond strength threshold for
hbond display. The strength value is between 0. and 2. By changing 1. to 0.2 you will see more
weak hydrogen bonds.

This parameter can be changed from the GUI hbond button popup-menu.

See also: GRAPHICS.hbondAngleSharpness Default: 1.

GRAPHICS 99

GRAPHICS.hbondAngleSharpness

GRAPHICS.hbondAngleSharpness determines how the strength depends on the
D-H...A(lone pair) angle. The preference can be found the general Preferences menu

Default: 1.7

GRAPHICS.hbondBallPeriod

This parameter defines the distance between centers of spheres of hbonds divided by the diameter
of the sphere.

GRAPHICS.hbondBallStyle

GRAPHICS.hbondBallStyle parameter controls the size of the hbond spheres and the
gradient of those sizes. The master size is a fraction of the GRAPHICS.ballRadius .

The following possibilities are implemented:

= "even" : all hbond-spheres have the same size1.
= "telescopic" : a zoom from donor to acceptor2.
= "by energy" : better hbonds are shown with thicker spheres3.
= "by atom size" : the radii form a gradient between ball radii of the hbonded atoms.4.

GRAPHICS.hbondWidth

relative width of a displayed hbond . This parameter can be changed from the
File/Preferences/DisplayGeneral menu.
See also: lineWidth , hbond display hbond, GRAPHICS.grobLineWidth ,
GRAPHICS.clashWidth , GRAPHICS.mapLineWidth .
Default (1.)

GRAPHICS.sketchAccents

logical GRAPHICS.sketchAccents if yes , activates a drawing mode that highlights the
boundaries of objects with black accents. It generates a Edouard Manet type visual effect (e.g.

Olimpia, 1863). Example in which the current object is shown as
ribbon with ligands in cpk and surrounding side chains as xsticks:

 GRAPHICS.sketchAccents = yes
 GRAPHICS.ribbonWorm = yes
 GRAPHICS.wormRadius = 1.
 GRAPHICS.quality = 20
 GRAPHICS.stickRadius = 0.25
 GRAPHICS.ballRatio = 1.1
 GRAPHICS.transparency[1] = 0.6
 GRAPHICS.hetatmZoom = 1.1
 color background white
 color residue label black # if you decide to display them
 display ribbon white
 display a_H cpk magenta
 display a_H xstick
 display Res(Sphere(a_H a_!H,W//!c,ca,n,o,h*)) & !a_*.//n,o,h* xstick white
 color xstick a_!H,W//n* lightblue
 color xstick a_!H,W//o* lightpink
display residue label a_//DX

100 GRAPHICS

GRAPHICS.hetatmZoom

The default ball and stick radii of a ligand can be different by the
GRAPHICS.hetatmZoom factor. This makes a better ligand view since the ligand stands out
from the surrounding protein atoms.
See also, icm.clr file about changing the default color for carbon atoms in ligands (a.k.a.
hetatm) (atom H color) Default (1.5)

GRAPHICS.hydrogenDisplay

determines the default hydrogen display mode for the display command.

 GRAPHICS.hydrogenDisplay = "polar"
 1 = "all" # all hydrogens are shown
 2 = "polar" <-- current choice # polar displayed, the non-polar hidden
 3 = "none" # no hydrogens are displayed

GRAPHICS.light

a rarray of 13 elements between 0. and 1. which controls the main properties of lighting model
in GL. The sections of this array can be changed with four sliders of the Display tab in a top tool
bar. The following elements are defined:

Elements Property Range Default Comment
GRAPHICS.light[1] shininess 0.,1. 1. property of the solid material
GRAPHICS.light[2:4] ambient light 0.,1. {0.15 0.15 0.15} intensity of RGB for ambient light
GRAPHICS.light[5:7] diffuse light 0.,1. {0.6 0.6 0.6} intensity of RGB for diffuse light
GRAPHICS.light[8:10] specular light 0.,1. {0.35 0.35 0.35} intensity of RGB for specular light
GRAPHICS.light[11:13] emission 0.,1. {0. 0. 0.} intensity of RGB for emitted light
The first element defines the shininess of solid surfaces such as cpk, ribbon, ball, stick,
xstick, and skin when they are displayed. The other elements contain triplets of R,G,B (red
green blue) values from 0. to 1. for the four types of visual effects. If R,G and B channels do not
have equal intensity (e.g. GRAPHICS.light[5:7] = {0.2 0.2 0.6}) the corresponding
light effect will have color (blue in the example above).
To re-render the solid graphics with new parameters, use the

display new reflection

command.
Example:

build string "se his trp glu"
display cpk
color background blue
GRAPHICS.light[5:7] = {0.2 0.2 0.6}
display new reflection

See also: GRAPHICS.lightPosition .

GRAPHICS.lightPosition

X,Y and Z posiion of the light source in the graphics window. The X and Y coordinates are
usually slightly beyond the [-1. 1] range where [-1.,1.] is the size of the window, and the Z
position is perpendicular to the screen and is set to 2. (do not make it negative). The default values
are the following:

GRAPHICS.lightPosition = {-1.,-2.,2.}

See also: GRAPHICS.light .

GRAPHICS 101

GRAPHICS.mapLineWidth

relative width of lines and dots of a displayed map . This parameter can be changed from the
File/Preferences/DisplayGeneral menu.
See also: lineWidth , GRAPHICS.grobLineWidth , map , GRAPHICS.hbondWidth .
Default (1.)

GRAPHICS.occupancyDisplay

preference controlling if and how the partial or zero atom occupancies are displayed. The
abnormal occupancies are shown as circles around atoms. These following values are allowed.

= "none" # nothing is displayed1.
= "circle" # a circle is displayed2.
= "label" # a circle and a label with the value (zero values are not shown)3.

A silly example.

GRAPHICS.occupancyDisplay="label"
build string "se ala his"
set occupancy a_//n* 0.5
display xstick

See also:

GRAPHICS.occupancyRadiusRatio♦
GRAPHICS.formalChargeDisplay♦

GRAPHICS.occupancyRadiusRatio

The radio of a circle showing non-1. occupancy atoms to the van der Waals radius of the atom.

Default value: 1.5

See also:

GRAPHICS.occupancyDisplay♦

GRAPHICS.quality

integer parameter controlling quality (density of graphical elements) of such representations as
cpk, ball, stick, ribbon . Do not make it larger than about 20 or smaller than 1. This parameter
supersedes the previous ballQuality parameter.
We recommend to make this parameter at least 15 if you want to make a high quality image. You
can also increase the number of image resolution by making the image window 2,3,4 times larger
(in the example below it is 2 times larger) than the displayed window.

GRAPHICS.quality = 15
display ribbon

press Ctrl-D for the fog effect, move clipping planes, change fogStart

write image png window=2*View(window)

Default: 5.

GRAPHICS.rainbowBarStyle

determines if and where the color bar will appear after a molecule is colored by an array. Coloring
by an array is one of the options of the display and color commands.

= "left" <- default choice1.
= "right"2.
= "no text"3.
= "no bar"4.

The bar can be dragged (use middlebutton), removed (point into the bar and press BACKSPACE),
just like a string label. To assign your own numbers to the bar, you may choose option "no

102 GRAPHICS

text" and use several display s_label commands. The bar, if displayed, is exported to
TIF, RGB images and postscript.

GRAPHICS.resLabelDrag

if yes, enables dragging of the displayed residue labels with the middle mouse button. The labels
can be reset to their initial positions with the set residue label distance rs_
command. The initial position is defined by the relative displacements of {0. 0. 0.} from the
special "residue label-carrying" atom of the residue, see the set label as_ command. See
also resLabelStyle
Default (no).

GRAPHICS.resLabelShift

a non-negative integer number of spaces preceding a residue label. This parameter is useful for
displaying residue labels next to a solid representation, such as xstick , ribbon or cpk.

See also: GRAPHICS.atomLabelShift, GRAPHICS.resLabelDrag and
s_labelHeader

Default (no).

GRAPHICS.ribbonCylinderRadius

GRAPHICS.ribbonCylinderRadius is the real radius of helical cylinders in schematic protein
topology display for the ribbonStyle = "cylinders" preference.

The radius can be set to zero for an automated, variable-radius mode or to a specific radius.
Example:

read pdb "1crn"
ribbonStyle = "cylinders"
GRAPHICS.ribbonCylinderRadius = 2.2
display ribbon

See also:

ribbon♦
ribbonStyle♦

GRAPHICS.ribbonGapDistance

The minimal distance between the first atoms of the neighboring residues when the ribbon gap
will be drawn if l_breakRibbon logical is set to yes.

Default: 4.

GRAPHICS.ribbonRatio

real ratio of depth to half-width for the protein ribbon .

Warning: note that this parameter influences GRAPHICS.wormRadius if
GRAPHICS.ribbonWorm is set no no . In this case GRAPHICS.wormRadius will be redefined
as GRAPHICS.ribbonWidth * GRAPHICS.ribbonRatio automatically.
Default: 0.3

GRAPHICS 103

GRAPHICS.ribbonWidth

real width of the protein ribbon .
Default: 1.

GRAPHICS.ribbonWorm

logical parameter, if yes, makes the ribbon round, rather than rectangular.

Default: no

GRAPHICS.rocking

preference with the following options:
= "X-rocking"1.
= "Y-rocking"2.
= "Xy-rocking"3.
= "xY-rocking" = "X-rotation"4.
= "Y-rotation"5.

See also, GRAPHICS.rockingRange and GRAPHICS.rockingSpeed , display
rotate
Default: 4

GRAPHICS.rockingRange

real value of rocking range.

Default: 1.

GRAPHICS.rockingSpeed

real value of rocking or rotation speed.

Default: 1.

GRAPHICS.selectionLevel

preference for the selection level of as_graph selection. The atoms, residues, molecules or
objects selected interactively in the graphics window are automatically stored in the as_graph
variable. The preference may have the following values.

 GRAPHICS.selectionLevel = "atom"
 1 = "object"
 2 = "molecule"
 3 = "residue"
 4 = "atom" # default
 5 = "variable"

The GRAPHICS.selectionLevel can be switched either interactively, e.g.

 GRAPHICS.selectionLevel = 3

or from GUI by selecting the level combo box with the following choices: O (object), M
(molecule), R (residue), x (atom), or an icon of a torsion (variable).

GRAPHICS.selectionStyle

preference for the style in which the graphical selection is shown. The preference may have the
following values.

 GRAPHICS.selectionStyle = "color"

104 GRAPHICS

 1 = "none"
 2 = "cross" # the default choice
 3 = "color"
 4 = "both"

In the 1-st mode ("none") only a single selection mark is shown. It is convenient when you do
not want multiple selection marks to overwhelm the image. The 3-rd mode is incovenient if you
want to try different colored displays for the selected fragments.

GRAPHICS.stereoMode

"up-and-down"1.
"line interleaved" # current choice2.
"in-a-window"3.
"Sharp"4.
"Anaglyph"5.

a simple hardware stereo mode for workstations with a horizontal frame splitter. In the
"up-and-down" mode a longer frame with two stereo images on top of each other is generated
and the two halves are then superimposed with the splitter. This mode does not require anything
from a graphics card, but does require a frame splitter. A frame splitter box was connected
between a monitor and a graphics card output. This mode has an unpleasant side effect, the rest of
the screen (beyond the OpenGl window) becomes stretched and the lower part of the screen is
superimposed on the top half.
The "line interleaved" mode can be used with a new type of frame splitter at the line level. In
this case the odd lines from one stereo-image are interleaved with the even lines of another. The
side-effect of this mode is that the intensity is reduced in half since at each moment one sees only
one half of the lines. The splitter device for this mode can be purchased from Virex
(www.virex.com). This mode produces a dark stereo image but is easily available (requires stereo
goggles, e.g. from Virex).
The "in-a-window" mode is used in SGI workstations and in a Linux workstation with an
advanced graphics card supporting a quad graphics buffer. In this mode the hardware stereo
regime applies only to an OpenGl window. This is the best mode but it requires an expensive
graphics card (plus the stereo goggles).
Note: LCD screens can not display a stereo image since the image is not continuously updated at
high frequency. This technical problem may be solved in the future (so we hear).

The "Sharp" option is for SHARP manufactured 3D screens.

The "Anaglyph" option is for the stereoscopic 3D effect achieved by means of encoding each eye's
image using filters of different (usually chromatically opposite) colors, typically red and cyan. The
Anaglyph option is the easiest to used with inexpensive 3D glasses and and without any expensive
3D compatible hardware or monitors.

GRAPHICS.stickRadius

radius (in Angstroms) of a cylinder displayed as a part of stick or xstick graphical
representation of a molecule.
Individual (residue-wide) control of stick radii.
In order to modify the default values of the radii from the command line use the set xstick
r_newradius command For example:

GRAPHICS 105

set xstick a_/13:15 0.5

In this case the ball radius will be changed according to the radio of the default parameters (e.g.
GRAPHICS.ballRaduis/GRAPHICS.stickRadius)
Default (0.4).

GRAPHICS.surfaceDotSize

Determines the size of the dot on the solvent accessible graphical surface area . This surface
is controlled by the GRAPHICS.surfaceProbeRadius radius. If this parameter is changed,
use

display surface refresh

to update the dot size.
Default (2.0).

GRAPHICS.surfaceDotDensity

Determines the number of dots per square Angstrom on the graphical solvent accessible
surface area . Do not confuse this parameter with surfaceAccuracy . The latter controls
the surface and energy calculation and does not affect the displayed surface.

See also: GRAPHICS.surfaceProbeRadius and GRAPHICS.surfaceDotSize. Default
(10).

GRAPHICS.surfaceProbeRadius

An increment to the van der Waals radii of atoms at thich the dotted atomic surface is calculated.
It is used by the display surface command to display dotted van der Waals surface. If the
GRAPHICS.surfaceProbeRadius is set to 1.4 the surface becomes equivalent to the solvent
accessible surface with a probe of 1.4A (e.g. in show surface area) .

Note, that in contrast to GRAPHICS.surfaceProbeRadius, the vwExpand parameter is
used for calculations of the solved accessible areas (e.g. show surface area).

Default (0.1)

GRAPHICS.transparency

Two parameters regulating the transparency of grobs.

GRAPHICS.transparency[1] contains a value from 0. to 1. representing the level
of transparency (0. solid, 0.99 - invisible)

♦

GRAPHICS.transparency[2] contains the brightness of the transparent surface
from 0. to 1.

♦

Grobs can also have individual transparency values (see set grob and make grob skin)

GRAPHICS.wormRadius

radius of coiled segments (i.e. those where the secondary structure is marked as "_") of a
polypeptide chain in ribbon representation.

Warning: this parameter behaves as independent only in the GRAPHICS.ribbonWorm is yes .
Otherwise, in case of a mixed ribbon representation display, ICM will reset the radius to the
product of GRAPHICS.ribbonWidth and GRAPHICS.ribbonRatio in order to match
thickness of the ribbon and the connecting coil.
Default (0.3).

106 GRAPHICS

GRID

parameters for the grid energy calculations (see also "gh,gc,ge,gs,sf" energy terms).

GRID.gcghExteriorPenalty

A preference to allow automatically impose a repulsive penalty outside the area covered by the
van der Waals maps (m_gc and m_gh).

= "repulsive" <- the default1.
= "zero"2.

In the default mode a volume penalty is imposed automatically outside the map box expanded by
the GRID.margin . The penalty potential is set to the GRID.maxVw value.
GRID.margin

real parameter determining the extra penalty-free space
around the map bounding box if
GRID.gcghExteriorPenalty = "repulsive"
(see above). For any atom which gets outside the
map-bounding box expanded by GRID.margin, its grid
van der Waals energy ("gc" or "gh") is penalized by the
GRID.maxVw value. This is the same penalty value which
atoms get if they severely clash with other atoms.

Therefore, if you set up grid energy calculations it is essential either to create a big enough box or
set a sufficient margin to allow ligand rearrangements near the receptor surface. If
GRID.margin is very large, your ligand will be "on the loose" and may spend too much time
flying in open air. It is recommended that the margin is not larger than the diameter of your ligand.
Default: 0.00 A

See also: GRID.gcghExteriorPenalty

GRID.maxEl

real truncation parameter. Default: 20.0 kcal/mole.

GRID.minEl

Default: -20.0 kcal/mole.

GRID.maxVw

The truncation level of the van der Waals repulsion energy pre-calculated in the "gc" grid energy
term. This number also is used as a penalty for the atoms outside the map box expanded by
GRID.margin .
Default: 3.0 kcal/mole.

GRID.gpGaussianRadius

The radius of the density Gaussian used to generate the property maps. Default: 1.2 A. See also:

term "gp"♦

GRID 107

set type property I_atomTypes R_upToSevenWeights♦
make map potential "gp"♦

GROB

Parameters related to graphics objects. See also the Grob family of functions.

GROB.atomSphereRadius

default radius (in Angstroms) which is used to select a patch on the surface of a grob. Used in the
color grob as_selection color command. See also: Grob(g R_6) function to return a patch
of certain color.
Default: 4.0.

GROB.relArrowSize

a real relative arrow size ([0.,1.]). Default: 0.2.

GROB.arrowRadius

a real arrow radius in Angstroms used by the Grob("ARROW", R_) function.

See also: makeAxisArrow , GROB.relArrowHead and GROB.`relArrowSize . Default: 0.5.

GROB.relArrowHead

a real ratio of the arrow head radius to the arrow radius. This parameter is used by the Grob(
"ARROW", R_) function. Default: 3.0.

GROB.contourSigmaIncrement

a real increment in the sigma level used to re-contour an electron density map using the make
grob m_eds add r_increment command.

This parameter is used in the GUI when plus and minus are pressed.

Default (0.1)

GUI

This parameter table contains some settings for the GUI (see below). Most of the settings are
stored automatically in the s_userDir + "/config/icm.cfg" file

To read about generating dialogs and menus from ICM see gui .

GUI.autoSave

a logical to activate the saving of the content of the session every
GUI.autoSaveInterval seconds. If the program exists unexpectedly or crashes the session
then can be restored.

GUI.autoSaveInterval

The number of seconds the session will save itself into a backup file as a precautionary measure
against an unexpected termination or crash (see GUI.autoSave) .

108 GROB

GUI.defaultLayoutAction

The behavior of ICM windows upon clicking the "Default Layout" button (third at the left bottom
corner). The "Main" location is the upper right window that gets maximized upon pressing the
fourth button.

 GUI.defaultLayoutAction = "3D to Main"
 1 = "3D to Main" <-- current choice
 2 = "Tables to Main"
 3 = "Alignmnets to Main"
 4 = "Html To Main"
 5 = "Keep Main"

GUI.tableRowMarkColors

E.g.

GUI.tableRowMarkColors = "#ff4444/#ffbb44/#44ff44/#4499ff/#ff44ff"

GUI.windowLayout

defines one of the two alternative ICM-panel layout styles:

= "traditional"1.
= "widescreen"2.

The widescreen layout will extend the graphics window vertically by shortening the terminal
window to the width of the workspace panel.

GUI.workspaceStyle

defines the look for objects and molecules in the ICM workspace panel.

= "all"1.
= "simple"2.

GUI.workspaceTabStyle

allows one to change the style of ICM-object tabs created in the workspace panel of ICM GUI.
= "icon title" # default1.
= "icon"2.
= "title"3.

GUI.workspaceFolderStyle

defines how many hierarchical levels of 3D molecular objects are shown in the Workspace panel.
= "closed"1.
= "object"2.
= "molecule" = "residue"3.

IMAGE

table contains settings used by the following commands creating image files:
write image,♦
write postscript,♦
display trajectory image.♦

IMAGE.quality

this integer parameter allows one to improve quality of vectorized postscript images saved by
the write postscript command. Actually this parameter only changes one number in the
header of a postscript file. You can also manually edit the file to correct this number. This number

GUI 109

defines the number of divisions of larger triangles into smaller ones accompanied by interpolation
of colors which occurs during printer interpretation of the postscript stream to provide smooth
continuous transitions. The optimal value of this parameter depends on the maximal triangle size.
It may grow as large as 100 for a single triangle on a page. Typically for a molecular image with
molecular surface IMAGE.quality=3 is sufficient.
Important. Do not set the parameter to values higher than 5 for the molecular image, your printer
will die!
Default: 3

IMAGE.printerDPI

this integer parameter the printer resolution in Dot Per Inch (DPI). Important for the write
image postscript command.
Default: 300

IMAGE.lineWidth

this real parameter specifies the default line width for the postscript lines.
Default: 1.0

IMAGE.scale

real variable. If non zero, controls the image scale with respect to the screen image size. The
screen image resolution (or Dots-Per-Inch) is usually 72. Let's assume printer DPI to be 300 (see
the IMAGE.printerDPI parameter). In this case IMAGE.scale=1. will make the printed
image the same pixel size (which is about 4 times smaller) than the screen image. For pixel images
saved by write image postscript command integer IMAGE.scale values (2., 3., 4.)
are preferable. That is what auto mode (IMAGE.scale=0.0) is trying to do. This consideration is
NOT important for the vectorized postscript images created by the write postscript
command.
Default: 0.0 (i.e. auto mode: maximum size fitting the page in given IMAGE.orientation)

IMAGE.stereoBase

real variable to define the stereo base (separation between two stereo panels) in the write
image postscript and write postscript command.
Default: 2.35 inches, (~ 60mm)

IMAGE.stereoAngle

real variable to define stereo angle (relative rotation of two stereo images) in the write
image postscript and write postscript command.
Default: 6.0 degrees.

IMAGE.gammaCorrection

real variable to to lighten or darken the image by changing the gamma parameter. A gamma
value that is greater than 1.0 will lighten the printed picture, while a gamma value that is less that
1.0 will darken it. You may adjust your gamma correction parameter for your printer with respect
to your display and add this setting to the _startup
Default: 2.0

IMAGE.color

logical to save color or black_and_white ('bw') images. You can override this parameter by
using the explicit bw option in the write image command.
Default: yes

110 IMAGE

IMAGE.compress

logical to toggle simple lossless compression, standard for .tif files. This compression is
required to be implemented in all TIFF-reading programs.
Default: yes
IMAGE.generateAlpha

logical to toggle generation of the alpha (opacity) channel for the SGI rgb, tif and png
image files to make the pixels of the background color transparent.
Be careful. The alpha channel is set to 1. for every pixel in your image which has the same color
as the background. Therefore there is a danger that the same color will be accidentally used inside
your image. If you nevertheless want to generate the alpha-channel, use a rare color your
background (not black, but rather green, e.g. rgb = {0.,0.976,0.} .
Default: yes

IMAGE.stereoText

logical to make text labels for only one panel or both panels of the stereo diagram.
Default: yes

IMAGE.previewer

a string parameter to specify the external filter which creates a rough binary (pixmap)
postscript preview and adds it to the header of the ICM-generated high resolution bitmap or
vectorized postscript files saved by the write image postscript, and write
postscript , respectively . This preview information is compliant with EPSI (encapsulated
Postscript interchange file format) and is useful to see a draft image instead of a empty rectangle
upon inclusion of the postscript file into other drawing and imaging software like IRIS showcase.
Default: "gs -sDEVICE=pgmraw -q -dNOPAUSE -sOutputFile=- -r%d ––
%s"

IMAGE.previewResolution

integer resolution of the rough bitmap preview added to the vectorized postscript file in lines
per inch. Recommendations:

10 - very rough (1/10th of an inch)♦
20 - a reasonable preview but no fine details♦
30 - a fine preview, do not increase it any higher since the file will become too large.♦

IMAGE.lineWidth2D

integer thickness of bonds in chemical 2D drawing upon the Copy Image command. This is
useful for cutting and pasting from ICM to external documents. Default: 1.5 pixels

IMAGE.bondLength2D

real length of a chemical bond (in inches) in chemical 2D drawings upon the Copy Image
command. To make your molecule large, increase it. This is useful for cutting and pasting from
ICM to external documents. Default (0.4 inches)

IMAGE.orientation

preference to specify image orientation.
= "portrait" <- default1.
= "landscape"2.
= "auto"3.

Default: "portrait"

IMAGE 111

IMAGE.paperSize

preference to specify paper size.
= "Letter (8.5x11")" <- default1.
= "Legal (8.5x14")"2.
= "11x17""3.
= "A4 (210x297mm)"4.
= "A3 (297x420mm)"5.

Default: "Letter (8.5x11")"

IMAGE.rgb2bw

rarray of 6 elements defining translation of rgb colors into black and white ('bw') grades. The
array is {RED_scale, GREEN_scale, BLUE_scale, RED_bias, GREEN_bias, BLUE_bias} and the
default values are {0.3125, 0.5, 0.1875, 0., 0., 0.}.

IMAGE.writeScale

an integer parameter used to increase the image resolution in the Quick Image Write tool (see a
little camera on the top toolbar). This tool uses the

 write image png window= N * View(window)

command where N defines if the image is N-times bigger than the screen image. This parameter
can be changed from File/Preferences/Image dialog.

LIBRARY

table containing string paths of the icm parameter files, which are loaded by the read library
[mmff] command. The library files will be taken from the s_icmhome directory if no explicit
directory is provided. Extensions are automatically added. Defaults:

 LIBRARY.bbt="icm" # bond bending types
 LIBRARY.bci="icm" # mmff bond charge increments
 LIBRARY.bst="icm" # bond stretching types
 LIBRARY.clr="icm" # colors, gui controls
 LIBRARY.cmp="icm" # amino-acid comparison matrix
 LIBRARY.cnt="icm" # distant restraint types
 LIBRARY.cod="icm" # atom codes
 LIBRARY.hbt="icm" # hydrogen bonding types
 LIBRARY.hdt="icm" # hydration types
 LIBRARY.lps="icm.lps" # loop database, rebuilt with write model [append]
 LIBRARY.men="icm.gui" # GUI commands. can be reloaded with 'read gui'
 LIBRARY.mmbbt= "mmff" # mmff bond bending
 LIBRARY.mmbst= "mmff" # mmff bond stretching
 LIBRARY.mmtot= "mmff" # mmff torsions
 LIBRARY.mmvwt= "mmff" # mmff van der Waals
 LIBRARY.rst="icm" # variable restraint types
 LIBRARY.tor="icm" # precomputed icmff torsion params
 LIBRARY.tot="icm" # torsion types
 LIBRARY.vwt="icm" # van der Waals types
 LIBRARY.res={"icm","usr"}

Example:

 LIBRARY.res=LIBRARY.res // "./benz.res" # just append
 LIBRARY.cod="./newCodes.cod"
 read library

LIBRARY.men

LIBRARY.men defines a string with a filename to the file with the menus.

Two possibilities:

define LIBRARY.men in the _startup file for the desired menus to be activated♦

112 IMAGE

The menus can later be extended with the read gui filename command.♦
open the $ICMHOME/_startup file and add this line
 LIBRARY.men = Getenv("HOME")+"/.icm/icm.gui" # now the ICM GUI will invoke your file

LIBRARY.res

a string array or file names of the residue libraries . File extensions can be omitted,
e.g. LIBRARY.res={"icm","user","./lib/mylibrary"}

OBJECT

Controls atom requisites which are written to a file in the write object command. Extensions
are automatically added. Defaults:

 OBJECT.bfactor =yes
 OBJECT.charge =yes
 OBJECT.occupancy=yes
 OBJECT.site =yes
 OBJECT.display =no
 OBJECT.library =no
 OBJECT.auto =no

Example:

 OBJECT.auto = no
 OBJECT.display = yes
 read object "crn"
 display ribbon a_/1:40
 set plane 2
 display cpk a_/12
 write object "tm" # graphics and planes are written
 delete a_*.
 read object "tm"

PLOT

Contains settings used by the plot command. All real sizes are expressed in the Postscript
"points" equal to 1/72" (about 1/3 mm).

PLOT.box

rarray of the origin and relative sizes of the ICM plot frame: { X_origin, Y_origin, X_size,
Y_size }. Box {0. 0. 1. 1.} fits the page optimally.
Default ({0. 0. 1. 1.}).

PLOT.color

logical to generate a color plot. Usually it does not make sense to switch it off because your
b/w printer will interpret the color postscript just fine anyway.

PLOT.font

preference for the title/legend font. The font size can only be redefined by editing the *.eps
file (search for the number before the scalefont string). Available choices:

1 = "Times-Bold"♦
2 = "Times-Roman" <- default choice♦
3 = "Helvetica"♦
4 = "Courier"♦
5 = "Symbol"♦

LIBRARY 113

PLOT.fontSize

real font size. Any reasonable number from 3. (1 mm, use a magnifying glass then) to 96.
Default (10.0).

PLOT.gridLineWidth

real width of grid lines. Use a small number (e.g. 0.01 for thin grid lines). Default (0.2).

PLOT.lineWidth

real line width for graphs (not the frame and tics)
Default (1.0).

PLOT.markSize

real mark size in points. Allowed mark types: line, cross, square, triangle, diamond, circle, star,
dstar, bar, dot, SQUARE, TRIANGLE, DIAMOND, CIRCLE, STAR, DSTAR, BAR. Uppercase
words indicate filled marks.
Default (1.0).

PLOT.numberOffset

integer offset for the X-coordinate with the number option. This option is used in a number of
macros generating multi-section plots for amino-acid sequences.
Default (0).

PLOT.Yratio

real aspect ratio of the ICM plot frame. Using link option of the plot command is equivalent
to setting this variable to 1.0. If PLOT.Yratio is set to 0. , the ratio will be set automatically to
fill out the available box optimally.
Default (0.8).

PLOT.logo

logical switch for the ICM-logo on the plot.
Default (yes).

PLOT.orientation

preference for the plot orientation. Currently inactive. Default (yes).

PLOT.seriesLabels

preference to indicate position of a series/color legend inside the plot frame. You can provide
individual names for each series in the optional string array argument of the plot
command. (e.g. plot M_XY1Y2 {"Title","X","Y","Ser 1","Ser 2"}) Available choices:

1 = "none"♦
2 = "right" <- default choice♦
3 = "left"♦
4 = "top"♦
5 = "bottom"♦

114 PLOT

PLOT.labelFont

preference for the data point label font. You can also redefine the font size with the
PLOT.fontSize variable. Available choices:

1 = "Times-Bold"♦
2 = "Times-Roman" <- default choice♦
3 = "Helvetica"♦
4 = "Courier"♦
5 = "Symbol"♦

PLOT.rainbowStyle

preference defining the color spectrum used by the plot area command. This command
lets you plot a function of 2 arguments and show the function value by color. By default the plot
command uses the minimal and maximal values of the provided matrix. You can enforce the range
with the color option. Available choices:

1 = "black/white"♦
2 = "blue/white/red" <- default choice♦
3 = "blue/rainbow/red"♦

Example:

 read matrix # def.mat is the default one
 PLOT.rainbowStyle=1
 plot area def display # grey-scale, automatic min and max
 PLOT.rainbowStyle=3
 plot area def color={-10.,0.} display # enforce new range
 PLOT.rainbowStyle=2
 plot area def transparent={-2.,8.} display
low values - blue, middle [-2.,8.] - invisible, large red

SEQUENCE.restoreOrigNames

When sequences from GenBank are read in ICM, they get a comment (or description) line that
describes their original complicated name. The description gets this : " Orig.name:
"origSeqName. This name can be restored upon writing in various formats including write
alignment fasta if this flag is set to yes . By default this logical variable is set to no .
Example:

delete a,b,c
make sequence 3 10 # creates sequences a b c
set comment a "an experimental sequence Orig.name: expr "
align a b c # creates aln
write aln fasta "tmp" # keeps a b c, default should be no, unless you redefined it
write aln fasta "tmp" SEQUENCE.restoreOrigNames=yes # restores the names.

SITE

This table contains parameters and preferences used to display the sites, or important residues.

SITE.appendStyle

SITE.appendStyle =

"none"1.
"merge source"2.

Allows to extend the site description with the name of a new sequence, even if the text of the
description if the same in the copy site command. For example, if there is a site in two
different sequences, say A_PIG A_DUCK, but they are being transferred to a third sequence with
two consecutive copy site commands, the resulting description may indicate something like
that:

PLOT 115

FT 135 135 ACT_SITE active site Serine (from A_PIG), if the style
is 1

♦

FT 135 135 ACT_SITE active site Serine (from A_PIG,A_DUCK), if
the style is 2

♦

See also:

site♦
copy site♦

SITE.defSelect

string of significant site types (shown as one letter abbreviations) Sequence identity in the
alignment positions which have one of those sites is additionally rewarded in the alignment score
calculation.
Default: "ABFGLMstepm"
SITE.labelOffset

(default 5. A) the real offset of the site label with respect to the residue label atom.
SITE.labelStyle

the style preference of the displayed site information:
"none"1.
"symbol" # one letter symbol, see site .2.
"comment"3.
"full"4.

The SITE.labelStyle can also be specified locally for a given site either when one creates a
site (e.g. set site a_/2:4 "comment" label=3 . In this case zero means 'unset', or
interactively by clicking on the lower-left area of the site label. One can select residues by
numerical version of the local SITE.labelStyle preference, e.g. a_/F2 .
SITE.labelWrap

0.5 (inactive)
SITE.showSeqSkip

the string of the site types skipped in the show sequence (or alignment) commands.

SITE.wrapComment

the integer length of the comment line. The longer lines will be automatically wrapped in the
graphics view. Default: 30

TOOLS

parameters for some ICM tools. The TOOLS.superimpose.. parameters control the
superimpose minimize

TOOLS.edsDir

A directory for the electron density map repository. If this path is empty (i.e.
TOOLS.edsDir=="") the loaded maps from are cashed into s_userDir + "/data/eds/"
directory

See loadEDS and loadEDSweb

TOOLS.membrane

This real array contains the geometrical parameters defining shapes with lipids or water for
implicit solvation calculations. The array may contain multiple sections of 5 elements each.
Each atom is considered either buried by other explicit atoms of the objects or exposed. Five types
of environment are possible depending on the surfaceMethod and the "sf" term:

vacuum (set term "sf" off)♦

116 SITE

constant tension (surfaceMethod=2; set term "sf";
surfaceTension=0.02)

♦

water (surfaceMethod=2;set term "sf", exposed atom solvation density in
col3 of icm.hdt)

♦

apolar (surfaceMethod=3;set term "sf", exposed atom solvation density in
col4 icm.hdt)

♦

membrane (surfaceMethod=3;set term "sf", exposed atom solvation density
in col3 or col7)

♦

The surfaceMethod is defined as membrane then each atom can be either in water environment
or in lipid environment. The attribution is done according to the atom coordinates and a series of
shapes coded by the TOOLS.membrane array.

Each shape is coded by 5 numbers in the TOOLS.membrane array. The following shapes with
lipid-like environment can be introduced.

Name Type(e1) e2 e3 e4 e5 Description Examples

membrane 1 z_bott z_top z_bmargin z_tmargin
Z-membrane
with
transitional
layers

{1.,0.,30.,5.,5.}

z-chimney 2 x1 y1 x2 y2
infinite
rectangular
beam in Z
direction

{2.,-5.,-5.,5.,5.}

z-cylinder 3 xct yct radius 0.
infinite round
cylinder in Z
direction

{3.,7.,7.,15.,0.}

cube 4 xct yct zct half-edge-length
cube with
defined
center and
half-size

{4.,0.,0.,0.,10.}

sphere 5 xct yct zct radius
sphere with
defined
center and
radius

{5.,0.,0.,0.,10.}

Each shape only defines the environment inside itself and is applied sequentially. To define water
environment inside preceding lipid shape, use the negative type, e.g. {..lipid_shape..,
-4.,0.,0.,0.,3.} for a water cube of half size 3.. Examples:

TOOLS.membrane = {1.,0.,30.,5.,5.} # one membrane from z=0 to z=30A with 5A transitional layers
TOOLS.membrane = {5.,0.,0.,0.,4., 5.,10.,10.,10.,4.} # two lipid spheres at 0,0,0 and 10,10,10
TOOLS.membrane = {5.,0.,0.,0.,6., -5.,0.,0.,0.,3.} # a spherical layer, two concentric spheres

See also: icm.hdt , surfaceMethod = 4 , energy term "sf"

TOOLS.minSphereCubeSize (default = 5.)

This parameter adjusts the minimal size of a cube for fast scanning of interatomic pairs. These
calculation may be necessary when pairs of atoms are processes during an energy calculation or in
a Sphere function. If an odd atom or group of atoms is far away from the rest of the object (an
unusual and undesired situation), an exceedingly large number of cubes between the groups need
to be created. In this case the minimal size of an edge needs to be increased to deal with those
sparse atoms. If you see a warning involving this parameter, have a look at the coordinates of your
object and make sure that the atom positions are correct.

TOOLS.pdbReadNmrModels

TOOLS.pdbReadNmrModels = "first"

= "first" : reads only one model from a multi-model (e.g. NMR) pdb file1.
= "all" : reads all models from a multi-model (e.g. NMR) pdb file and creates a
separate object for each of them

2.

= "all stack" : creates one object and loads all other models as a stored cartesian
stack

3.

TOOLS 117

This preference is set to "first" by default. Resetting it to "all"is equivalent to option all
in read pdb . Setting the preference to 3 is equivalent to the read pdb all stack
s_pdbMultiModelFile command. Example:

TOOLS.pdbReadNmrModels = "all"
read pdb "1dkc" # all 10 models are read in as a_1dkc_1., .., a_1dkc_10.
read pdb "1dkc" TOOLS.pdbReadNmrModels=3 # one object with a built-in stack is created

TOOLS.smilesXyzSeparator

ICM has an option to generate smiles with coordinates which is a much more compact (and one
line only) replacement for an mol / .sdf file

TOOLS.superimposeMaxIterations

The maximal number of iterative superpositions with gradually improved weights in the
superimpose minimize procedure that optimizes the weighted rmsd to find the best
superposition core. Do not afraid to set this number to a very large one since the procedure will
exit earlier if the convergence is achieved.

Default: 10

TOOLS.superimposeMinAtomFraction

The minimal fraction of equivalent atom pairs that will be superimposed with significant weights
in the superimpose minimize procedure.

Default: 0.5

TOOLS.superimposeMaxDeviation

Determines the maximal atom deviation for determining the core subset of atoms for which the
unweighted RMSD is reported in r_2out in the superimpose minimize procedure. The
unweighted rmsd for a subset must be lower than this parameter.

Default: 2.0

TOOLS.tsToleranceRadius

radius around atoms where the deviations from the target are not penalized

Default: (0.)

See also: selftether , term ts , TOOLS.tsShape

TOOLS.tsShape and TOOLS.tsShapeData

This preference and a rarray of parameters supports positional restraints for all non-virtual
atoms of the current object. It can be used concurrently with atom-specific selftethers and does not
need the set selftether as command. The TOOLS.tsShape preference has the following
values:

 1 = "none" <-- current choice
 2 = "sphere" # also a spherical layer if two radii are specified
 3 = "box"

The TOOLS.tsShapeData real array contains the parameters needed for a shape restraint. Note
that while TOOLS.tsShape preference can be specified as an inline argument of a minimize or
montecarlo command, the array can not. Therefore the values need to be filled before you call
the command, e.g.

TOOLS.tsShapeData = {20.} # radius of the sphere
minimize "vw,ts" TOOLS.tsShape=2

118 TOOLS

sphere.For the sphere option the radii and the center x,y,z parameters can be specified.

TOOLS.tsShapeData = { [minimal_radius] max_radius [x y z] }

The radii can be provided in any order. The default radius is 20. and the center of the spherical
restraint is the origin ({0. 0. 0.}

Examples:

 TOOLS.tsShapeData = {10.} # keep atoms inside R=10
 TOOLS.tsShapeData = {10. 10.} # keep atoms on the surface of the sphere R=10
 TOOLS.tsShapeData = {10. 15.} # penalty free is the spherical layer between R=10 and 15
 TOOLS.tsShapeData = {10. 15. 3. 3. 3.} # layer between R=10 and 15 around 3.//3.//3. center
 TOOLS.tsShapeData = {10.}//Mean(Xyz(a_//!vt*)) # do not let molecule fly beyond 10A from where it is now

box.

TOOLS.tsShapeData = {xmin ,ymin ,zmin ,xmax ,ymax ,zmax }

These six parameters are compatible with the Box function. Example:

TOOLS.tsShapeData = Box(a_// 3.)
#
TOOLS.tsShapeData = 100.//100.//-1.//100.//100.//1. # keep atoms in 1A layer around Z-plane

See also: selftether , term ts

TOOLS.tsWeight

Weight for a special terms "ts" that can be used in minimize to tether the atoms to its initial set
of coordinates (see selftether). To keep only some atoms self-tethered, use option
selftether= as_selfTetheredAtoms of the minimize command. The convert command
and set selftether set them.

Example:

 build string "lys"
 randomize v_//x*
 minimize "vw,to,ts" selftether=a_//ca,c,n TOOLS.tsWeight=10.

Default: (0.)

See also: term ts , selftether , TOOLS.tsShape.

TOOLS.writePdbRenameRes

Defines translation rules for the internal ICM residue names in show pdb or write pdb
commands. For example, names ra for adenosine, or cyss for the bonded cysteins, can be
translated to other names during the pdb export into ade or cyx . The format is the following:
icm_res_name , exported_pdb_res_name ; ... , e.g.

 TOOLS.writePdbRenameRes = "cyss,cyx;his,hid" # will rename two residues

See also: show pdb write pdb .

WEBLINK

This table contains definitions of types of web links used in the web, show html, and write
html commands. The table is read from "WEBLINK.tab" file from the $ICMHOME directory.
Change this file for your own definitions. The weblink specification is used to extend the
argument string substituted for %s (e.g. "IL2_HUMAN" element of the table array linked
according to the type
SP %s "http://www.aaa?%s" will be transformed into the IL2_HUMAN link. If %Ns specification is
used, only N characters of the argument string will be retain in the link. For example,
PDB %s "http://www.pdb?%4s" and 1xyz_a15_25 (specifying chain and residue range)
will be translated into

TOOLS 119

1xyz_a15_25 which in your browser will
look like this:

"AUTO" is another type which can be used in the link S_ "TYPE" ... expression. In this case the
DB type is automatically recognized according the database reference string pattern (see also
WEBAUTOLINK). An example table:

#>T WEBLINK
#>-DB------DR--LINK-------
 PDB %s http://www3.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=s&form=6&uid=pdb|%4s|&Dopt=g
 NCBI g%s http://www3.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=s&form=6&uid=%s&Dopt=g
 EMBL %s http://www3.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=s&form=6&uid=emb|%s|&Dopt=g
 SP %s http://www3.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=s&form=6&uid=sp||%s&Dopt=g
 SPA %s http://www3.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=s&form=6&uid=sp|%s|&Dopt=g
 PROSITE %s http://saturn.med.nyu.edu/srs/srsc?[PROSITE-acc:%s]
 MED %s http://www3.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&uid=%s&dopt=r

Example:

 read table "seqcomp.tab" #contains references to different databases
 web SR link SR.NA1 "PDB" SR.NA2 "AUTO"

WEBAUTOLINK

This table contains definitions of web link string patterns for automatic recognition in the web,
show html, and write html commands. The table is read from the "WEBLINK.tab" file in
the $ICMHOME directory. Change the file for your own definitions. Recognition is not perfect
because the patterns overlap.
Example:

 read table "seqcomp.tab" #contains references to different databases
 web SR link SR.NA1 "AUTO" SR.NA2 "AUTO"

Other shell variables

defCell

the real array of the default cell parameters. This definition is used in the Resolution and
MaxHKL functions if cell parameters are not provided as arguments.
Default: {1. 1. 1. 90. 90. 90.}

accFunction

the real array of the solvent accessibility
penalty parameters (as described in Batalov and
Abagyan, 1999).
It contains the values of a, b, c and E damping parameters
for amino acid substitution scores. Generally, if a residue
is completely buried (Area=0), its substitution scores will
be used without changes. If it is completely exposed, its
substitution scores will be multiplied by the minimal
possible value of a. Between these cases the substitution
scores are modulated by a smooth ("arctangent") function
with a saddle point at Area=c, where the slope will be -b.
The fourth parameter is reserved for development.

This definition is effectively implemented in the Align(seq_1 seq_2 area) }, Score functions

120 WEBLINK

and find database command.
Default: {0.33 2.35 0.211, -15.0}.
See also: alignMethod .

gapFunction

the real array of the gap penalty parameters, which represent a piecewise-linear concave
function (as described in Batalov and Abagyan, 1999).
ATTENTION: at the present time this gapFunction is only active when alignMethod =2.
The first two values replace gapOpen and gapExtension traditional values. If present, the
third element of the array represents the length of the gap, starting at which further
gapExtensions become equal to the fourth element of the array. Likewise, if more elements
are present, they represent pairs of the threshold lengths of the gap and the new gapExtensions
values. For example,

 gapFunction = {2.4 0.15 10. 0.05 20. 0.}

means that

gap penalty=2.25+0.15*L for L={ 0..10} (and for L=1 it is 2.4= gapOpen),♦
gap penalty=3.25+0.05*L for L={11..20} and♦
gap penalty=4.25 for L>20♦

The calculations are fastest for the traditional
two-element gapFunction. The three- or
four-element gapFunction invokes the
optimized routines and is 50-70% slower. The
general kind gapFunction costs approximately
70-90% additional time for every pair of
gapFunction values. If the last
gapExtension is zero, it may be omitted. This
definition is effectively implemented in the Align
, Score functions and find database search
command.

Default: {2.4 0.15}.
Recommended (put it in your _startup file): gapFunction = {2.4 0.15 10.}
This set will produce fast and structure-like alignments.
See also alignMethod, and accFunction (the accessibility attenuation parameters).

I_out

an integer array in which the output of some commands is stored.

M_out

matrix in which the output of some commands is stored.

R_out

real array in which the output of some commands is stored.

Functions returning in R_out:

Axis # middle point of the axis♦
Disgeo # returns error sum of negative scaled eigen values in R[0], and first three 3
scaled eigen values

♦

accFunction 121

LinearFit # residuals♦
Xyz(..) returns inverse transformation♦
learn returns model accuracy and stds.♦

R_2out

auxiliary rarray. Used in addition to R_out.

S_out

string array in which the output of some commands is stored.

swissFields

string array of SWISS-PROT fields to be read by default in read sequence swiss

If the field name starts from a minus ('-'), this field will be ignored in the feature table list.

Example:

swissFields={"-HELIX ","-COIL ","-STRAND","-TURN "}
to suppress the FT records with the secondary structure info

readMolNames

string array in which the SDF-file comment fields containing database compound identifier
and description are preset. There is a standard place where database compound identifier should be
stored in SDF (MOL)-files. This is the first line of the entry. However most of the database
providers got used to leaving this line empty. Instead they put identifier and description in the end
of the file in the following fashion:

...
M END
> <CAT_NO>
R150002

> <NAME>
(5-OXO-HEXAHYDRO-PYRANO[3,2-B]PYRROL-1-YL)-ACETIC ACID METHYL ESTER

$$$$

In this particular case before using such database set

readMolNames = {"<CAT_NO>" "<NAME>"} # useful for Sigma-Aldrich files

Another example:

readMolNames = {"<CODE>" "<IUPAC_NAME>"} # useful for ACD database

Named Atom/Residue/Molecule/Object/Variable
Selections

Selections of atoms, residues, molecules, objects or internal variables (torsions, planar angles,
bond lengths) can be stored in variables.

Examples:

 cc = a_//ca # created named selection variable cc
 show cc & a_/3:15 # use it in the expression

In this case the named selection cc is a true ICM-shell variable, not just an alias for the Ca
selection. Please do not confuse it with another useful mechanism which allows you to use a
string in a selection. This mechanism is used in scripts and macros.

122 R_out

Example:

 cc = "a_//ca" # in this case cc is a string, not a selection
 show $cc & a_/3:15 # $cc is replaced by a_//ca before parsing

How to store and exchange selections in strings:Examples of using the String (os|ms|rs
[name|number]) function to return a residue selection:

l_showResCodeInSelection = yes # the default
res_str = String(Res(Sphere(a_H [1] a_A//!h*,ca,c,n,o 3.5))) # same as with option String(.. name)
show res_str
 a_2c0cb.b/^T159,^S205,^K209,^Y224,^V248,^Y275,^L305,^M356,^N361
or
l_showResCodeInSelection = no
res_str = String(Res(Sphere(a_H [1] a_A//!h*,ca,c,n,o 3.5))) # same as with option String(.. number)
show res_str
 a_2c0cb.b/159,205,209,224,248,275,305,356,361

However, be careful with using it in an arbitrary case at the atomic level since it may lead to a
string that is too long.

as_out

an atom/residue/molecule/object selection variable where some commands or functions store
their output:

Rmsd♦
Srmsd♦
superimpose♦
set tether♦
show drestraint♦
show tethers♦
find chemical♦

If atoms a_1./3/ca,c,n relate to atoms a_2./45/ca,c,n, then the first set will end up in as_out and
the second in as2_out.

as2_out

the second set of atoms (selection) returned by the following commands and functions:
Rmsd♦
Srmsd♦
superimpose♦
set tether♦
show drestraint♦
show tethers♦

See also: as_out.

vs_out

The variable selection where some commands or functions store their output:
read variable saves a selection of loaded variables;♦

Chemical arrays and tables. Operations,
virtual chemistry.

Chemical arrays can be read from multiple external formats (e.g. .sdf , ml2) either as
standalone arrays, or columns in chemical spreadsheets. These arrays are abbreviated as X_

Reading/Writing Chemical Arrays and Tables

read table mol reads chemical table from file

write table mol writes chemical table to file

Named Atom/Residue/Molecule/Object/VariableSelections 123

InChI conversion

converts chemicals to InChI or InChI_key converts InChI to
chemical array

Smiles conversion

converts smiles to chemical array

converts chemical array to smiles

Conversion from loaded 3D objects

converts 3D selection to chemical array

converts chemical to 3D

converts chemical to 3D and optimize

converts loaded object to 3D and optimize

converts loaded object to 3D ICM object, preserve coordinates

Modifying chemicals

modify chemical perform chemical group modifications on chemical arrays

apply 2D depiction

Generating chemicals. Virtual chemistry

Markush library generation

Chemical reactions

Comparing, Searching and Chemical Matching

searching in chemical tables

search in Molcart databases

search in loaded 3D objects

chemical distance/similarity

Other chemical search related functions

Nof chemical

Index chemical

Predicting chemical properties

Predict

Chemical superposistion

superimpose Rmsd Srmsd

chemSuper3D

Pharmacophore analysis

pharmacophore search

superimpose

Rmsd

124 Chemical arrays and tables. Operations,virtual chemistry.

create pharmacophore

Batch chemical processing,

_chemBatch

SMILES and SMARTS

Simplified Molecular Input Line Entry Specification which stems from traditional string notation
of graphs and trees, e.g. the Newick notation. The acronym introduced by David Weininger to
represent chemical valence model by a string (e.g. CC=O). It can also be used as an exchange
format for chemical data. The algorithm was published in 1988 and is described in detail
at the WWW site of Daylight Chemical Information Systems, Inc.
http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html .
Another description can also be found here:
http://en.wikipedia.org/wiki/Simplified_molecular_input_line_entry_specification

The SMILES notation allows one to represent a 2D chemical drawing as a string, (e.g.
"C1CCCCC1" for cyclohexane). The SMARTS notation is an extension of SMILES that allows
one to specify chemical patterns with wildcards for atoms or bonds, e.g. "[C,N,O]?" .
SMARTSSMARTS is an extension of the SMILES notation to include wildcards. This chemical
patterns can be used in chemical queries and is described here:
http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html

The primitives supported in ICM include the following (note that the atom primitives in general
are in brackets, e.g. [Cl] for a chlorine atom):

Symbol Description Examples
* any atom *
a aromatic aN(=O)O
A aliphatic AAA
C aliphatic carbon
c aromatic carbon
[#6] any carbon
Dn the number of heavy neighbors [*;D2] any atom with two non-H connections
Hn number of attached hydrogens [*;H2] atom with two hydrogens (see also Y)

Rn the number of rings the atom
belongs to [#6;R2] any carbon in two rings

rn the size of smallest ring the atom
belongs to [*;r6]

vn valence, sum of bond orders of all
neighbors

Xn the number of all neighbors
including hydrogens

- negative charge [--], [-2]
+n positive charge [++], [+2]
^n sp1,sp2,sp3 hybridization e.g. [C;^2] sp2 carbon # ICM extension

yn ring number in SSSR e.g. [*;y1] any atom which belongs to the first
ring # ICM extension

Yn number of at least attached
hydrogens

[*;Y2] atom with two or more hydrogens #
ICM extension

#n atomic number [#7]
@ anticlockwise chirality C[C@H](F)O
@@ clockwise chirality
~ any bond C~C
: aromatic bond c:c
-,=,# single, double and triple bonds C#C

=&!@ bond SMART notation for double,
not in ring acC=&!@Cca

SMILES and SMARTS 125

!primitive negation [!C] non-aliphatic carbon, [*;!R] any atom not
in a ring

expr1&expr2 logical and (high precedence) [c,n&H1] any arom carbon OR H-pyrrole
nitrogen

expr1,expr2 logical or [C,N,O] C or N or O

expr1;expr2 logical and (low precedence) [c,n;H1] arom carbon OR nitrogen with one
hydrogen

Aromatic vs aliphatic

Note that uppercase atoms in SMARTS will only match aliphatic (not aromatic) atoms. For
example "C" will not match any atom in "c1ccccc1" (or "C1=CC=CC=C1") ring. If you want to
match both cases you should use [#] notation. For example "[#6]" will match both aliphatic and
aromatic carbons.

Recursive SMARTS

This SMARTS feature allows you to define "atomic enviroment" when matching. "Enviroment"
atoms will not be included into result match.

For example [C&!$(C=O)&!$(C#N)] will match any aliphatic carbon not double bonded to an
oxygen and not triple bonded to a nitrogen.

Example:

build smiles "CN(CCN(CC(C=CC(=C1)C(=O)NC(C=CC(C)=C2NC(N=CC=C3C(C=CC=N4)=C4)=N3)=C2)=C1)C1)C1" name="gleevec"
display xstick
find chemical a_ "[O,S&v2,N&^2&X2,N&^1&X1,N&^3&X3]" all # find hydrogen bond acceptors
color xstick as_out rgb = { 152 251 152 }
find chemical a_ "[!#6;!H0]" all # find hydrogen bond donors
color xstick as_out rgb = { 238 130 238 }
find chemical a_ "a" all # aromatic
color xstick as_out rgb = { 255 165 0 }
find chemical a_ "[C&!$(C=O)&!$(C#N),S&^3,#17,#15,#35,#53]" all # hydrophobic
color xstick as_out rgb = { 224 255 255 }

R-groups, attachment points, and chemical searches.

In reactions, Markush structures and building blocks two additional wildcards are used:

Group Example
R1,--R2,.. groups [R1]N(=O)O
[C*] attachment points
Do not confuse any atom, e.g. [*], and attachment point where the asterisk follows an atom
symbol in square brackets, e.g. [C*]. Example in which an attachment point is added to a carbon
attached to a ring:

Replace(Chemical("C(=CC=CC1)C=1C"), "Cc(:c):c" "[C*]c(c)c" exact)

See also:

Smiles function and the build smiles command.♦
Nof(chemarray s_smart) # the number of found fragments♦
Index(chemarray s_smart)♦
Replace(chemarray s_smartFrom s_smartReplace [exact])♦
modify chemarray s_smartFrom s_smartTo♦
find molcart table= s_tableName s_smart [name= s_outputTable]♦

SMARTS chemical expression language, an extention of the smiles language.

SOAP services and communications

To access some external services there is a protocol called SOAP. Now ICM can send a SOAP
request and get the result back to ICM.

Sending request to the SOAP server

A SOAP request is a special XML text which contains :

126 SOAP services and communications

the SOAP method name and a name-space♦
the method arguments♦

In ICM you can form a SOAP message using the SoapMessage function. It creates a special
soapMessage object which holds SOAP method name and it's arguments.

Example:

create a message with SOAP method and a namespace
req = SoapMessage("doSpellingSuggestion","urn:GoogleSearch")
add method arguments
req = SoapMessage(req, "key","btnHoYxQFHKZvePMa/onfB2tXKBJisej") # get key from google
req = SoapMessage(req, "pharse", "Bretney Spers") # some misspelled pharse

Once the message is ready it can be send to the server using the read http command.

read string s_soapServiceURL + " " + String(soapMessage)

The result of the server response will be stored into s_out variable. It can be parsed to a
soapMessage object using the SoapMessage function.

Example:

HTTP.postContentType = "text/xml"
read string "http://api.google.com/search/beta2" + " " + String(req)
res = SoapMessage(s_out)
if Error(res) == "" then
 # process message
endif

Processing SOAP results

To access the content of SOAP message, the Value function is applied

If the result of the SOAP response is a simple value, such as
integer,`real,`string,`sarray,`rarray,`iarray, then it will be automatically casted to the
corresponding ICM type. Otherwise a special type of parray will be returned.

In some cases the result returned by SOAP server is actually some complex data structure (not just
a single string or number) The most common complex SOAP types are 'struct' and 'array'. Each of
them can either contain a simple type of other 'struct' or 'array'.

You may navigate through this structure using index expressions:

soapObject[i_integerIndex]

or

soapObject[s_stringIndex]

The number of elements in the array of struct can be returned by Nof function.

Sarray of field names of a struct can be returned by Name function

For example the following code navigates through the result obtained from the google search
service.

 res = Value(SoapMessage(s_out))
 s_html = ""
 s_html += "Searched web for " + res["searchQuery"] + ". Search took " + res["searchTime"] + " seconds.
"

 elements = res["resultElements"]
 for i=1,Nof(elements)

 resElement = elements[i]

 s_html += "
"

 cat = String(resElement["directoryCategory"]["fullViewableName"])
 summary = String(resElement["summary"])
 title = String(resElement["title"])
 snippet = String(resElement["snippet"])
 url = String(resElement["URL"])

SOAP services and communications 127

 cachedSize = String(resElement["cachedSize"])

 if (Length(title) != 0) then
 s_html += "<u>" + title + "</u>
"
 else
 s_html += "<u>" + url + "</u>
"
 endif

 if (Length(snippet) != 0) s_html += snippet + "
"
 if (Length(summary) != 0) s_html += "Description: " + summary + "
"
 if (Length(cat) != 0) s_html += "Category: <u>" + cat + "</u>
"
 if (Length(title) != 0) s_html += "<u>" + url + "</u> - " + cachedSize + "
"

 endfor

{ KEGG database }

KEGG (Kyoto Encyclopedia of Genes and Genomes) is a database resource that integrates
genomic, chemical, and systemic functional information. In particular, gene catalogs in the
completely sequenced genomes are linked to higher-level systemic functions of the cell, the
organism, and the ecosystem.

Example of few requests:

l_info = l_commands = no
HTTP.postContentType = "text/xml"
HTTP.soapAction = "SOAP/KEGG"
url = "http://soap.genome.jp/keggapi/request_v6.2.cgi"

req=SoapMessage("get_pathways_by_genes" "SOAP/KEGG")
req=SoapMessage(req "genes_id_list", {"hsa:5292"})
read string url+" "+String(req)

sss = SoapMessage(s_out)

if (Error(sss) == "") then
 S_path = Value(sss)
 print "pathways = " Sum(S_path,",")

 for i=1,Nof(S_path)
 req=SoapMessage("get_references_by_pathway" "SOAP/KEGG")
 req=SoapMessage(req "pathway_id", S_path[i])
 read string url+" "+String(req)
 sss = SoapMessage(s_out)
 print "references for " S_path[i]
 Value(sss)
 endfor

endif

For KEGG WSDL file click here. API is defined here

Related functions: SoapMessage Value Error Nof Type Name

Creating your own GUI elements:
Programming GUI.
There are three possibilities to add a new menu or a popup dialog.

Main menus. Add or modify a section in the icm.gui file. To program the main GUI
menus and popup dialogs, you need to modify a single file, called icm.gui . This file
resides in the $ICMHOME directory. The icm.gui file contains controls for each menu
item. It the menu item requires a dialog, it is automatically generated.

1.

Popup dialogs in tables. Add a header element called cellPopup or tablePopup
need to be added to a table, e.g.

add column t {1 2 3}
add header t "POPT New Table Item\nSYNT # T_Table\nSYNT # r_Enter_Real (2.)\nSYNT show $1\n" name="tablePopup"
add header t "POPT New Table Cell Item\nSYNT # r_Enter_Real (2.)\nSYNT print $1 + %@.%^[%#]" name="cellPopup"

The following shortcuts are allowed:

 %# is the line number, e.g. t.mol[%#]
 %^ is the column name, e.g.
 %@ is the table name, e.g. %@.%^ is table.column

2.

128 Creating your own GUI elements: Programming GUI.

Popup dialogs in internal html-documents. For those you need to add ths following
line:

#dialog{"YourCaption"}

so that the dialog looks like this:

#dialog{"Enter name"}
s_name ("Kosmo")
ff_file|*.html ("")
print $1 $2

#dialog{ "Sample Dialog" }
txw_Enter_Text ()
txt = %s_out # s_out is not a safe place (might be overwritten)
print Length(txt)

Notice underscore containing names like s_ need to be capped with the percent symbol

3.

The icm.gui section consists of the following fields:

Field Example Description
MENU Display.Advanced.Pockets this menu item will be added in the top menu bar
OPTN Apply optional. Allows to specify special kinds of dialogs.
OPTN Conditions and Flags
COMM Comment
ICON icon name
SYNT display g_pocket the ICM-command executed upon pressing 'OK' or 'Apply'.

An example:

MENU Display.Color.White
SYNT color white

Many examples of how to program controls for the script arguments can be found in the
icm.gui file.

Creating controls for the main input data types.

To create a control for a particular data type one needs to add the following line.

SYNT # t_name (default1 | default2) [OPTIONS>]
Example:

SYNT # i_enterInt (10)

The following input types are possible:

type example comment

b_button SYNT # b_Undisplay_distances
(delete g_distances)

executes the
command in ()
when pressed.

d_directory SYNT # d_PDB_Directory
(SYS:s_pdbDir)

gives you a dialog
to select a directory

ff_fileDialog
SYNT #
f_Input_file↑*.mol;*.SD*;*.sd*
()

generates a
secondary file
dialog

f_fileDialog
SYNT #
f_Input_file↑*.mol;*.SD*;*.sd*
()

generates a file
dialog first, ignores
other arguments

g_grobMesh SYNT # g_Mesh (*)
star means show the
current list of grobs
in icm

i_integer SYNT # i_size (10) also allows one to
filter the input, e.g.
SYNT #20 i_Angle

MIN:-360 MAX:360)

Creating your own GUI elements: Programming GUI. 129

(360
l_logical SYNT # l_high_res (yes)

o_radioButtons SYNT {o_icmWord1_text_1
o_icmWord2_text_2 ..}

os1_molObjects,
ms1_molecules,
rs1_residues,
as1_atoms

p_preference SYNT #
p_ribbonStyle_Ribbon_Style

internal name
followed by the
control title.

r_realVar SYNT # r_temperature (200.)
R_realArray

s_stringVar SYNT # s_name (John) returns quoted
"John"

txw_Big_Text_Box SYNT # txw_Description
($s_out)

stores edited text in
s_out variable. Use
%s_out to access
the value.

txt_text SYNT # txt_boxName (Text to
be displayed) free comment

u_unknown

T_table SYNT # T_Table_Name (*)
an asterisk (*) will
be substituted with
the list of tables

X_chemicalTable

C_column SYNT # C_Select_Column
[TABLE:2,SARRAY]

selected a column of
the existing table.
Works in pair with
T_ or X_

ch_Compound SYNT # ch_Draw_Compound
draw compound or
type
SMILES/SMARTS
string

Possible values of OPTIONS are:

option name description example

IARRAY,SARRAY,RARRAY,CHEMARRAY narrow the choice for column
selector C_

RDONLY sets control to read-only mode.
User can not pick from the list.

REQUIRED insist that the value is not empty
RESIZE allow resizing of the window [RESIZE]

RIGHT,LEFT,CENTER alignment of the control on the
dialog

TABLE:~~i_tableReferenceNumber
column selector C_ need a
reference to a parent table. This
number is found counting prefix_
before the table

SMARTS generate SMARTS expression
from ch_ input

NOCOORDS do not include 2D coordinates into
result of ch_ input

The i_tableReferenceNumber needs some clarification.

SYNT # T_Table_A (*) [RDONLY,LMINWIDTH:110] C_by_Column () [TABLE:1,RESIZE,LMINWIDTH:110]
SYNT # { o__inner o_left o_right } [CENTER]
SYNT # T_Table_B (*) [RDONLY,LMINWIDTH:110] C_by_Column () [TABLE:6,RESIZE,LMINWIDTH:110]

Here column selection (C_by_Column) for table B (the 3rd line) is refering to table B .
T_Table_B has its reference number as 6 (not 4) because this i_tableReferenceNumber counter
counts each o__inner o_left o_right as 3 words in contrast to the dollar-argument number

130 Creating your own GUI elements: Programming GUI.

.

Conditional options:

VISIBLE s_condition| shows/hides control depending on
condition

OPTN s_condition enables/disables control
depending on condition

Example of "Extract Ligand" dialog :

MENU Extract Ligand(s)
COMM Extract ligand into chemical table
OPTN !isMini !isPharm
ICON bipm_chemring
SYNT #1 ms1_
SYNT #2 { o_"2D"_as_2D_drawing o_"3D"_keep_3D_coordinates }
SYNT #3 l_append_To_Existing_Table (no) [OPTN:(nChemTable)] X_ (*) [RDONLY,OPTN:($4)]
SYNT if ($3) extractLigand $1 $2 $3 Name($4 table)
SYNT if (! $3) extractLigand $1 $2 $3 ""

Example of "Merge Two Sets" dialog:

MENU Chemistry.Merge Two Sets
OPTN nTable>1
SYNT # T_Table_A (*) [RDONLY,LMINWIDTH:110] C_by_Column () [TABLE:1,RESIZE,LMINWIDTH:110]
SYNT # { o__inner o_left o_right } [CENTER]
SYNT # T_Table_B (*) [RDONLY,LMINWIDTH:110] C_by_Column () [TABLE:6,RESIZE,LMINWIDTH:110]
SYNT # txt_Hint (inner - only molecules present in BOTH A and B tables are kept
left - ALL rows of A are kept
right - ALL rows of B are kept)
SYNT join $2 $5 $3

Specifying the default values of the arguments

The general syntax of the default value specification is:

(value1 | value2 | ...)

Where default_value can also be one of the following:

asterisk, * : lists all values/variables of specified class, e.g. seq_ (*)♦
dynamic condition: expression in extra parenthesis containing filtering condition, e.g.
((isAmino))

♦

custom text/string. This is either any text or expression in the form:
internal_text@Human_Readable_Text , e.g. (10|0@all) you will see all , but value
0 will be returned.

♦

Examples:

os1_Select_Object (*) # lists all objects loaded in current session
os1_SelectObject ((isIcmObj)) # lists all ICM objects
os1_SelectObject (*|Obj(as_graph)@Graphic Selection) # lists all ICM objects plus 'static choice' of graphic selection

ms1_Select_Molecule ((!isWater)) # will forms a list of all molecules excluding waters
ms1_Select_Molecule ((isAmino)|(isNucl)) # will forms a list of all amino and nucl chain molecules.
ms1_Select_Molecule ((isHet)|(isAmino&nResInMol<10)) # list all ligands plus short amino chains (peptides)

This is a list of internal GUI functions that can be used in dynamic conditions

Functions for the Molecular arguments (ms1_ ..):

isAmino (lists amino chains)♦
isNucl (lists nucleotide chains)♦
isHet (lists hetero molecules - ligands)♦
isMetal (lists metals)♦
isWater (lists water)♦
isDsMol (lists displayed molecules)♦
isIcmObj (only molecules of ICM objects)♦
isLinkedToAli (lists linked to an alignment molecules)♦
hasSwissID (lists molecules with swiss ID)♦
nResInMol (counts number of residues in molecule)♦
nAtomInMol (counts number of residues in molecule)♦

Functions for the Object arguments (os1_ ..):

Creating your own GUI elements: Programming GUI. 131

hasAmino (lists objects with amino chains)♦
hasNucl (lists objects with nucleotide chains)♦
hasHet (lists objects with ligands)♦
hasMetal (lists objects with metals)♦
hasStack (lists objects with attached conformation stack)♦
nMolInObj (counts number of molecules in the object)♦
nResInObj (counts number of residues in the object)♦
nAtomInObj (counts number of atoms in the object)♦
isIcmObj (lists ICM objects)♦
isDsSelObj (lists displayed and selected objects)♦
isDsObj (lists displayed objects)♦
isPharm (lists pharmacophore objects)♦

Suppressing the automatic interpretation of X_ with the % symbol.

Note, that the GUI dialogs and controls are generated automatically every time the program finds
a letter followed by underscore. For that reason if you want to suppress that action, use the
percent symbol, e.g.

SYNT print %s_out # do not want to generate a text dialog.
SYNT display %as_graph # here you do not want to generate an as_ selection dialog
SYNT if Nof(g_distances)==0 delete %g_distances

Specifying MIN and MAX values, or adding other controls.

SYNT #20 i_Angle (360|MIN:-360|MAX:360)

Specifying objects, molecules, residues and atoms

More detailed examples.

SYNT # f_Input_file|*.mol;*.SD*;*.sd* () # generates a file dialog
SYNT # r_Sphere (3.) # here r_ is the type; 3. is the default value
SYNT # r_Resolution_Increase (1.2|1.5|1.75|2|2.5|3) # you can provide popular choices
SYNT # r_Ribbon_Width (SYS:GRAPHICS.ribbonWidth) # that is how a system variable is redefined

The actual icm commands that use those arguments refer to them as $1 $2 .. , e.g.

choose a mesh and save it to a file
SYNT # g_mesh (*)
SYNT # f_file
SYNG write $1 $2

Layout issues

Layout defines how various input elements are arranged on the page. ICM arranges all controls in
a single line horizontally. Each new line in the dialog definition starts a new horizontal layout. In
some cases you need to arrange controls as a grid. BEGINGRID and ENDGRID options should be
used to do this:

Example:

l_Anilines (yes) [BEGINFRAME:Options,BEGINGRID] l_Nitro (yes)
l_Metals (yes) l_Carboxylic_Acid (yes)
l_Hologen_Hydrides (yes) l_Aldehydes (yes)
l_Alkyl_halides (yes) l_Acid_halides (yes) [ENDGRID,ENDFRAME]

Radio-buttons can be also arranged in a several rows/columns.

Example:

{ o_1_Option_11 [HORIZONTAL:2] o_2_Option_12 o_2_Option_13 o_2_Option_14 o_2_Option_15 }
{ o_1_Option_11 [VERTICAL:2] o_2_Option_12 o_2_Option_13 o_2_Option_14 o_2_Option_15 }

Creating a dialog with tabs.

Each page (tab) should be started with '%%%Page_Name' line. Then follows a page declaration.

Example:

MENU &File.Tabs Example
SYNT %%%Page1

132 Creating your own GUI elements: Programming GUI.

SYNT # s_Text_1 ("aaa") [REQUIRED]
SYNT print $1
SYNT %%%Page2
SYNT # s_Text_2 ("bbb") [REQUIRED]
SYNT print $1
SYNT %%%Page3
SYNT # s_Text_3 ("ccc") [REQUIRED]
SYNT print $1

Creating a wizard dialog.

You may easily convert your tab dialog into wizard dialog by replacing '%%%' with '^'.

Example:

MENU &File.Wizard Example
SYNT ^^^Page1
SYNT # s_Text_1 ("aaa") [REQUIRED]
SYNT print $1
SYNT ^^^Page2
SYNT # s_Text_2 ("bbb") [REQUIRED]
SYNT print $1
SYNT ^^^Page3
SYNT # s_Text_3 ("ccc") [REQUIRED]
SYNT print $1

See also: Askg

Adding custom user functions to 'Insert Column'

This section contains description of the syntax to custom function for Insert Column dialog.

Example:

CFUN newgroup.Ligand_Strain
SYNT # (X)->r
SYNT funcLigStrain(%1)

Each column function start with CFUN which contains dot separated path in the form of
folder1.folder2.funcname

Existing folders ID are:

creat : "New"♦
trans : "Transformations"♦
arith : "Arithmetical"♦
math : "Mathematical"♦
search : "Find"♦
str : "Text"♦
chem : "Chemical"♦

For example to add new function into 'New' folder the path should look like: creat.MyNewFunc

The SYNT section should contain one or more template description. Each template description
line start with '#'

Template describes the type of arguments and the result type.

The syntax:

(<arguments>)->(<result>), brackets are optional
arguments: space or comma-separated values in format:
 type:argname=default
Types combination of: i r s l w I R S X (Uppercase: array, lowcase: constant)
 "I" will accept both integer column (Iarray) and integer constant
 1I 1R 1S 1IR 1IRSX .. -- no constants allowed (only arrays)

Examples:

(r r)->r # takes to real columns or two real values and return real column as a result♦
(X r:curoff=0.5)->r # takes chemical and optional real argument with default 0.5♦

The line in the SYNT section which does not start with '#' will be treated as an arithmetic
expression which calculates the column value. It may contain any arithmetic operators, constants,

Creating your own GUI elements: Programming GUI. 133

shell functions and user functions.

See add column function for details.

Commands

ICM commands have a certain structure:

they use command words from this list: align assign build clear compare connect convert
copy compress crypt delete display edit enumerate exit exclude filter find fix fork fprintf
group gui keep learn load make menu minimize modify montecarlo move pause plot
predict print printf quit query randomize read redo refresh rename restore rotate select set
show sort split sprintf ssearch store strip superimpose test transform translate undisplay
undo unfix unselect unix wait write
alias antialias center color help history link list macro model sql web
accessibility alignment amber angle area aselection atom axis background ball base bar
bfactor bond born boundary box catalog cavity cell chain charge cmyk column command
comment comp_matrix conf cpk csd cursor chemical cistrans database distance directory
disulfide dot drestraint energy error evolution factor field filename font foreground frame
function gamess genome gradient grid grob hbond header html hydrogen iarray icmdb
idb image index info input integer intensity inverse iupac json kernel key label library
logical loop limit margin material map matrix memory merit mol mol2 moldb molcart
molecule movie molsar name nucleotide object occupancy oracle origin output page
parray pattern peptide pipe pdb plane postscript potential preference preview problem
profile project property prosite protein pharmacophore rarray reaction real regression
reflection residue resolution ring rgb ribbon regexp rainbow sarray segment selection
selftether separator sequence session site size skin slide salt solution stack stdin stdout
stick sstructure string surface symmetry system svariable table term tether texture
topology torsion trajectory transparent tree type unknown user variable vector version
view virtual volume vrestraint vselection water weight window wire xstick
add all append auto auxiliary binary bold bw cartesian clash chiral dash exact join fast
fasta flat formal format full gcg gif global graphic heavy identity italic jpeg last left local
mmcif mmff msf mute new none nosort number off on only pca pir pmf png pseudo pov
reverse right similarity simple sln smiles smooth solid static stereo swiss targa tautomer
underline unique wavefront xplor

♦

the they arguments consisting of constants, named shell variables or expressions
including functions, e.g. display ribbon Res(Sphere(a_H a_A 7.6))

♦

the order of arguments of different data type is arbitrary♦
at the end of the command one may have a list of additional shell variables that will be
redefined temporarily only for the duration of this command, e.g. montecarlo
v_//x* mncalls=200 mncallsMC=20000 temperature=1000.

♦

several commands in one line can be separated by a semicolon♦
commands can return certain shell variables, like i_out , i_2out, r_out , l_out ,
s_out , R_out , as_out .. with useful output

♦

to suppress command output redefine those shell variables: l_info=no or
l_warn=no (for some commands there is also a mute option)

♦

add

A family of commands adding things. Some commands use append syntax instead It is also
used as an option equivalent to append in write command.

add one or several columns or header elements to an existing
table

Adding a single column/header you may add a column (or columns) to an existing table T or
create a new one if the specified name does not exist.

add column T I|R|S|P|i|r|s [name= s [append|delete]] [index= i_pos] [mute] [local]

add header T I|R|S|P|i|r|s|M|etc [name= s [append|delete]] [mute] [local]

(to add a row see add table args)

134 Commands

Adding multiple column/headers

add column T I|R|S|P|i|r|s I|R|S|P|i|r|s .. [name= S [append|delete]] [index= i_pos]
[mute] [local]

add header T I|R|S|P|i|r|s|M|etc I|R|S|P|i|r|s|M|etc .. [name= S ..] [index= i_pos] [mute]
[local]

this command adds one or several columns to an existing table in the i_pos column (in other
words if you want you column to be in the 2nd position, specify 2 as an argument). The columns
are append to the end of the table by default. If the table does not exist the command will create a
new table.

It an integer, string, or real are specified as an argument instead of a column-array, this value is
multipled to create a column of the appropriate size.

Options:

append: if the name option is specified prevents overwriting the column with the same
name, instead modifies the provided name (e.g. 'A' -> 'A_1')

♦

delete: if the name option is specified overwrites the column with the same name.
Without delete (default) it will be overwritten only if the data type is the same.

♦

mute : The mute option suppresses the info (equivalent to temporarily setting
l_info=no).

♦

local : for use in macros ans shell functions: allows for local tables independent from
tables with the same name at higher levels.

♦

Examples:

add column t {1 2 3} # create a new table
add header t "A new table" name="title" # add a string to the header section
add column t {"a","b","c"} name="AA" # column AA is appended
add column t {"x","y","z"} index = 2
adding a chemical array
add column t Parray({"CC","CC(O)=O","CCO"} smiles) name = "mol" index = 1

adding multiple arrays
add column t {1 2 3} {3 2 1} {"a","b","c"} Parray({"CC","CC(O)=O","CCO"} smiles) name={"A","B","C","mol"}
t
 #>T t
 #>-A-----------B-----------C-----------mol--------
 1 3 a "CC"
 2 2 b "CC(O)=O"
 3 1 c "CCO"

The columns can also be functions, e.g.

add column t {1. 2. 3.} {2 3 4}
add column t function="A+B" name="AplusB"
add column t function="Log(A,10)" name="log10A"

Use add column inside a macro:

macro ResAreas rs_sel
 rs_sel = Res(rs_sel & a_*.!W)
 show surface area Mol(rs_sel) Mol(rs_sel)
 add column t Name(Res(rs_sel) full) Area(Res(rs_sel)) Area(a_1.A/A)/Area(a_1.A/A type) local name={"sel","area","rel_area"}
 set format t.sel "<!--icmscript name=\"1\"\ndisplay xstick %1\ncolor xstick cpk %1 & a_*.//c* green\ndisplay residue label %1\n\n\n-->%1"
 if(Type(resAreas)!="unknown") delete resAreas
 rename t "resAreas"
 keep resAreas
endmacro

See also: move column , add column function

Add dependent columns

add column T function=s_expression [name=s] [index= i_pos]

Adds a column defined by the s_expression, which may contain operations with other columns in
the same table. The generating expression information is attached to the column, which allows one
to recalculate the values in the column using the same expression. The following functions are

add 135

supported:

Basic arithmetical operations on columns are supported, examples:

add column t {1. 2. 3.} {1. 2. 3.}
add column t function="A+B" name="C"
add column t function="A-B" name="D"
add column t function="A*B" name="E"
add column t function="A/B" name="F"
add column t function="A**0.5 + B**0.5" name="G"
build column t
show t

The following mathematical and data conversion functions are supported:

 Ceil, Floor, Log, Sqrt, Sign, String, Power

Examples:

add column t {1. 2. 3.} {1. 2. 3.}
add column t function="Sqrt(A)" name="C"

Chemical functionsExamples of chemical functions

add column t function="Nof_Atoms(mol,'*')" name="nof1" # all atoms
add column t function="Nof_Atoms(mol,'[!H]')" name="nof2"
add column t function="Nof_Atoms(mol,'[C,O]')" name="nof3"
add column t function="Nof_Atoms(mol,'[H]')" name="nof4"
add column t function="MolWeight(mol)" name="molWeight"
add column t function="MolLogP(mol)" name="molLogP"
add column t function="MolLogS(mol)" name="molLogS"
add column t function="MolPSA(mol)" name="molPSA"
add column t function="MolVolume(mol)" name="molVolume"
add column t function="MoldHf(mol)" name="moldHf"

User-defined functions

A user can defined custom function to be used in column formula expression

Example:

function ligStrain(P_chem) # returns strain for a given 3D chemical
 vwMethod = "exact"
 dielConst = 2.
 read mol P_chem name="LIGSTRAIN"
 build hydrogen
 set type charge mmff
 convert auto
 minimize cartesian "mmff" mncalls=1
 newE = Energy("ener")
 minimize cartesian "mmff" 5000
 baseE = Energy("ener")
 r_ligandStrain = newE - baseE
 delete a_
 return r_ligandStrain
endfunction

assumes that t_3D exists and contains 3D chemicals in the mol column
add column t_3D function="ligStrain(mol)" name="strain" # strain for every row in the table

ICM built-in function

ICM build-in functions can also be used in the expression with "Icm::" prefix.

Example:

add column drugs function = "Icm::Sum(Icm::Unique(Icm::Sort(Icm::Sarray(A.dosages.dosage:route))),',')" name="route"

Recalculating.To recalculate use the build column column_name command.

Examples:

add column T Chemical({"c1(c(nc(N)nc1O)O)N", "c1c[nH]c2C(N=C(N)Nc12)=O"}) name="mol"
add column T function="MolWeight(mol)" name="MW"
add T # add new row

136 add

T.mol[3] = Chemical("CC")
#
build column T.MW # recalculate mol. weights, setting the value for the new row

add column T2 {1 2 3} {4 5 6}
add column T2 function= "A+B" # sum of two columns

See also: build column to update values, Parray (X [s_func]) to add a fixed column

Adding real arrays as matrix rows

add matrix [M] R|M2

adds a matching row R or a matrix with the matching number of columns to matrix M, by stacking
extra rows at the bottom. If the matrix does not exist it is created with the default name (the name
is returned in s_out) Example:

add matrix M {1. 2.} # creates new matrix M
add matrix M {3. 3.} # adds a row
show M
 #>M M
 1. 2.
 3. 3.
add matrix M Matrix(2) # adds two rows

Note that to extend the matrix horizontally (adding columns) can be done with the double-slash
operator (M1 // M2).

add slide to a slideshow.

add slide [i_posInCurrentSlideshow] [s_slideTitle] [comment = s_slideComment] [
display= "-option|-option"]

adds a slide to the slideshow table. This table contains one parray, called
slideshow.slides . If the slide position is not specified the slide will be added to the end.
Alternatively, it will be inserted after the specified i_posInCurrentSlideshow

Normally the slide is saved with window layout, and graphical parameters. Those can be ignored
if you add the display="-.." option. The options can be used either in the on mode, e.g.
"-layout", or in the off mode, e.g. "+layout" (all on by default) :

"-layout" # ignores the window/panel layout♦
"-smooth" # ignores smooth view transitions between slides♦
"-add" # do not overwrite the previous slide views, just add to it♦
"-gf" # ignore graphical representations, inherit them♦
"-color" # ignore colors , inherit them♦
"-labeloffs" # do not display labels♦
"-viewpoint" # ignore viewpoint changes♦
"-graphopt" #♦
"-mol" # do not display the chem-table window♦
"-grob" # do not display grobs♦
"-map" # do not display maps♦
"-all" # switches off all the above properties♦

Example:

build string "ala ala ala"
display ribbon a_
display xstick a_/12,13 magenta
add slide "My View" comment = "Two magenta residues" display="-layout"
undisplay # hide all
wait..
display slide "My View" # bring it back

See also: display slide , Slide

add 137

Add / insert table rows. Append tables.

add T_1 [i_RowNumber] [T_2 | row_selection | number=i_nofRows] [simple]
add/insert rows (or another table with the same coloumns) to table T_1 at the target row position
i_RowNumber . Use 1 (one) if you need to insert the first line. If the second table or selection is
not provided, the command adds an empty row. In this case you can add number option to specify
the number of rows to add/insert. The row_selection can contain rows from the same table or from
a different table with a matching column structure. In the latter case, the columns may be matched
by their names regardless of column order. Default values are inserted for all absent columns. The
defaults for an empty line are empty string or zero value for strings or numbers, respectively. The
target position will then correspond to the index of the first inserted row.

simple option toggle column matching order 'by position' instead of default 'by name'.

From version 3.6-1e the add tableName command also returns the current row as i_out .

Examples:

group table t {1 2 3} "a" {"b","d","e"} "b"
show t
 #>T t
 #>-a-----------b----------
 1 b
 2 d
 3 e

add t 1 # insert empty line before 1st
show t
 #>T t
 #>-a-----------b----------
 0 ""
 1 b
 2 d
 3 e

group table t {1 2 3} "a" {"b","d","e"} "b" # recreate the table
add t 3 t[1] # insert a duplicate of 1st row after the 2nd
show t
 #>T t
 #>-a-----------b----------
 1 b
 2 d
 1 b
 3 e

group table t {1 2 3} "a" {"b","d","e"} "b" # recreate the table
group table tt {1 2 3} "c" {"b","d","e"} "b" {4 5 6} "a" # another table
order is diffferent, extra column present
add t 3 tt[1:2] # or add t 3 tt.aa<3
show t
 #>T t
 #>-a-----------b----------
 1 b
 2 d
 4 b
 5 d
 3 e

alias

alias abbreviation word1 word2 ...
create alias
alias delete abbreviation
delete alias
It is important that the abbreviation is not used in the ICM-shell. The same names can not be given
later to ICM-shell objects.
Alias may contain arguments $0, $1, $2, etc. ICM-shell will pick space-separated words following
the alias name and substitute $1, $2, etc. arguments by the specified argument. $0 stands for all the
arguments after the alias name.
Examples:

 alias seq sequence # seq will invoke sequence

138 add

 alias delete seq # delete alias name seq
 alias dsb display a_//ca,c,n # abbreviate several words to
 # reduce typing efforts
 # aliases with arguments
 alias NORM ($1-Mean($1))/Rmsd($1)
 show NORM {6,7,8,4,6,5,6,7,5,6} # make sure there is no space

align

align number: renumber residues sequentially

align number rs_residuesToBeRenumbered i_first|s|I|S [molecule]
align number ms_chainsToBeRenumbered [i_firstNumber]
renumber selected residues, or residues in selected molecules or objects sequentially in all of them
from starting one or the specified first number. May be useful to deal with messy numbering in
some pdb-files. Option molecule will start numbers from 1 or i_first in each molecule. Chain
ids are also allowed, e.g. set number a_/13 "13A". Multiple residues can be set with
integer or string arrays of labels. If integer array contains the same numbers, e.g. 10,10,10 the
labels will get the insertion characters, e.g. 10,10A,10B .

Examples:

 read pdb "1crn"
 align number a_1 # renumber all res. 1 to N
 align number a_1/10:20 101 # just the selected residues from 101
 align number a_1 101 # renumber all res. 101 to 100+N
 read pdb "2ins"
 align number a_/* 1
 align number a_/* 1 molecule # each chain starts from 1

align number ms_chainsToBeRenumbered seq_master [i_offset] renumber the residues of the
selected molecule according to seq_master master sequence which is aligned to the sequence of
the selected chain. The alignment (pairwise or multiple) need to be linked to the
molecule/chain and both the chain sequence and the master sequence need to be covered by the
alignment. The molecular sequence can be generated with the make sequence [
ms_chainsToBeRenumbered] command.
This command may be useful in cases in which a structural model does not represent the entire
sequence because of omitted loops, N- and C- termini, while you still want to keep the numbering
according to the full master sequence. You might want to use the command also on models by
homology generated with the build model command.
Example:

 seqmaster = Sequence("ACDEFGHIKLMNPQRST")
 build string "--DEFGH-----PQRST" # dashes are skipped
 make sequence a_1 name="seqmodel" # sequence is auto-linked
 a = Align(seqmodel,seqmaster) # linked alignment
 align number a_1 seqmaster
 # Info> residues of a_def.m renumbered by sequence 'seqmaster' from alignment 'a'
 display residue label

align: ICM multiple alignment algorithm

align ali_SequenceGroupName [tree=|filename= s_epsFileName]

align sequence [selection] | seq1 seq2 .. | seedSequence [min_seqID (20.)] [name=s
]
make a multiple alignment of specified sequences. The sequence group may result from the
group sequence s_groupName command. The input arguments include the following:

seq1 seq2 ... : explicitly specified♦
sequence : all sequences in the shell♦
sequence selection : all sequences selected in GUI♦
seqGroup : sequences grouped together previously♦
seedSequence : sequences in the shell similar to the specified with optional min_seqID
(default 20%).

♦

alias 139

For pairwise alignment use the Align(seq1 seq2) function. The algorithm includes the
following steps (inspired by corridor discussions with Des Higgins, Toby Gibson and
Julie Thompson):

align all sequence pairs with the ICM ZEGA algorithm, and calculate pairwise
distances between each pair of aligned sequence with the Dayhoff formula, e.g. the
distance between two identical sequences will be 0. , while the distance between two 30%
different sequences will be around 0.5. The distance goes to an arbitrary number of 10.
for completely unrelated sequences. The distance matrix Dij can later be extracted from
the alignment with the Distance(ali_) function.

1.

build an evolutionary tree from Dij with the "neighbor-joining algorithm" of Saitou,
N., Nei, M. (1987) to determine the order of the alignment and calculate relative
weights of sequences and profiles from the branch lengths. The tree will be saved in the
file defined by the tree= s or filename= s option . Starting from version 3.5-2 the
aligTree.eps file is NO LONGER saved by default). The so-called Newick tree
description string will be saved in s_out .

2.

traverse the tree from top to bottom, aligning the closest sequences, sequence and profile
or two profiles. After each Needleman and Wunsch alignment, build the profile.

3.

generate the final neighbor-joining evolutionary tree and write the PostScript file with the
tree to disk.

4.

Examples:

 read sequences s_icmhome+"zincFing"
 list sequences # see them, then ...
 group sequence alZnFing # group them, then ...
 align alZnFing # align them
 align alZnFing filename="znTree.eps" # eps file with a tree

 read sequence swiss web "12S1_ARATH"
 read sequence swiss web "12S2_ARATH"
 group sequence arath
 align arath

EST,DNA alignment and assembly

align new ali_sequenceGroup [seq_seed]
multiple alignment of ESTs and genomic DNA and consensus derivation. This command uses the
external the sim4 program to generate pairwise alignments between expressed DNA sequence and
a genomic sequence. The program can be downloaded from the
http://globin.cse.psu.edu/globin/html/docs/sim4.html site.
The procedure has the following steps:

sequences are sorted by
length

♦

the longest sequence is
chosen as the seed sequence
unless it is explicitly provided

♦

the longest sequence from the
remaining set is aligned to the
seed sequence using the
external sim4 program.

♦

the output of this program is
parsed and translated into the
icm alignment

♦

the consensus sequence is
created and becomes the
master sequence

♦

the procedure is repeated until
all the sequences are
processed

♦

the multiple sequence
alignment is further cleaned
to compress spurious gaps
when possible. This cleaning
makes the consensus much
more compact.

♦

The result of this command is best

140 align

displayed with the show color
ali_ command.

An example:

 read sequence "http://www.ncbi.nlm.nih.gov/UniGene/" + \
 "download.cgi?ID=5198&ORG=HsLINE=1" #
 read sequence "../Hs5198"
 group sequence unique u # squeeze out obvious redundancies and form group 'u'
 align new u # form multiple alignment and build consensus
 show color u

See also:

filtering, group sequence unique=".."♦
Trans ()♦
show [color] ali_♦

align two molecules by their backbone topology

align [distance] ms_1 ms_2 [i_windowSize (15)] [r_seqWeight (0.5)]

This command finds the residue
alignment (or residue-to-residue
correspondence) for two arbitrary
molecules having superposable parts of
the backbone conformations. The
structural alignment identification and
optimal superposition is primarily based
on the C-alpha-atom coordinates, but the
sequence information can be added with a
certain weight (the default value of
r_seqWeight is 0.5 which was found
optimal on a benchmark). The structural
alignment algorithm is based on the
ZEGA (zero-end-gap-alignment) dynamic
programming procedure in which
substitution scores for each i,j-pair of
residues contain two terms:

structural similarity in a i_windowSize window between two fragments surrounding
residues i and j, respectively. This similarity is calculated as local Rmsd of the residue
label atoms (these atoms are C-alpha atoms by default but can be reset to other atoms
with the set label command, e.g. set label a_*.//cb). If the option
distance is specified the deviation of the interatomic distances between equivalent
pairs of atoms (so called distance rmsd) is calculated instead of a more traditional
root-mean square deviation between atom coordinates of equivalent atoms. The latter
method is less accurate but an order of magnitude faster.

♦

sequence similarity (if r_seqWeight > 0.). Average local sequence alignment score in the
i_windowSize window is calculated for i,j-centered pair of fragments. In this sense this
sequence similarity is different from the one used in pure sequence alignment (see the
Align function), in which just the i,j residue pair is evaluated. The default value of
r_seqWeight of 0.5 is rather mild (about a half of the structural signal).

♦

The output:
ali_out contains structural alignment (if sequences linked to the molecules do not
exist, they will be created on the fly). The alignment can be further edited with the
interactive alignment alignment editor.

♦

as_out contains the residue selection of the aligned residues in the first
molecule

♦

align 141

as2_out contains the residue selection of the aligned residues in the second
molecule

♦

M_out , the matrix of local structural/sequence similarity in a window is retained and
can be visualized by:

♦

r_2out the result RMSD♦
Example:

read pdb "1ql6"
read pdb "2phk"
align a_1ql6. a_2phk.
make grob color 10.*M_out name="g_mat # x,y,z scales
display g_mat
or
plot area M_out display grid link

See also:

Align(seq_1 seq_2 distance|superimpose). This function creates the first
unrefined structural alignment as described above.

♦

find alignment which refines initial structural alignment.♦
The overall result of the align command is equivalent to:

 a = Align(... superimpose) # superposition/RMSD based local str. alignment
 a = Align(... distance) # distance RMSD based local str. alignment

 find a superimpose 4.0 0.5

Example:

 read pdb "1brl"
 read pdb "1nfp"
 rm a_*.!A
 display a_*.//ca,c,n
 color molecule a_*.
 align a_2.1 a_1.1
 center
 show String(as_out) String(as2_out)
 color red as_out
 color blue as2_out
 show ali_out

align heavy command for multiple alternative structural
alignments.

align heavy rs_1 rs_2 [r_rmsd] [i_windowSize [i_minFragment]] [r_elongationWeight]
This method, as opposed to the default align ms_1 ms_2 generates many possible solutions
and does not depend on sequential order of the secondary structure elements. However, it leads to
a combinatorial explosion and is intrinsically less stable computationally, and generally requires
more time. The command finds the optimal 3D superposition between two arbitrary
molecules/fragments (two residue selections rs_1 and rs_2).
The procedure generates structural fragments of certain initial length and superimposes all of them
to calculate the structural similarity distance. Then the "islands" of similarity are merged into
larger pieces. This process is controlled by the following arguments: i_windowSize is the residue
length of structural fragments for the initial fragment superposition. Fragment pairs with the rms
deviation less than r_rmsd are then combined, giving composite solutions of total residue length
larger than i_minFragment. Acceptance or rejection of the composite solutions is governed by the
following score (the smaller, the better)
score = rmsd - (1.37 + Sqrt(1.16 * length - 15.1)), length >= 14
If length > 14 , we use linear extrapolation of the score dependence:
score = rmsd - (1.37 + 1.068*(length-13))
The score is required to be less than r_rmsd. Practically, for longer fragments one can find much
larger RMS deviations according to the length correction of the score.
Defaults:

r_rmsd = 1. A♦
i_windowSize = 15 residues♦
i_minFragment = i_windowSize♦
r_elongationWeight=0.1♦

142 align

There may be several different reasonable solutions. All the solutions are sorted, shown and stored
in the memory. The two output selections as_out and as2_out contain the best scoring
solution. Any solution can be loaded and displayed. Additionally, a residue alignment is created
for each solution. The decision about which residues are aligned is based on the overall score
described above for the of combined fragments.
See also: How to optimally superimpose without the residue alignment
Example:

 read pdb "4fxc"
 read pdb "1ubq"
 display a_*.//ca,c,n
 color molecule a_*.
 align heavy a_1.1 a_2.1 12 1.5 .1
 center
 load solution 2 # load the second best solution
 color red as_out
 color blue as2_out
 for i=1,10
 load solution i
 color molecule a_*.
 color red as_out
 color blue as2_out
 pause # rotate and hit 'return'

 endfor

Note. Increase i_minFragment parameter (12 in the above example) to something like 20 if the
program hangs for too long. Interrupt execution with the ICM-interrupt (Ctrl \) if you want only
the top solutions.

append (commands)

There is a family of commands starting with the append keyword. They are usually used to
add sub-elements to a compound object like an alignment or a stack. In many cases ICM
uses add syntax instead of append.

Appending sequences to a sequence group or an alignment

append ali_seqGroup seq_1 seq_2 .. .
appends sequences to a sequence group. This may be required if you formed a sequence group for
future alignment or filtering/compression and you want to append additional sequences to it.

Examples:

read sequence group "bunch.seq" name="xx" # group xx is formed
append xx my_seq # appending your sequence to xx
group xx unique # filter out identical ones
align xx

read sequence swiss web "12S1_ARATH"
read sequence swiss web "12S2_ARATH"
group sequence name="arath"
read sequence swiss web "14310_ARATH"
append arath 14310_ARATH
align arath

Appending a molecule or a ligand stack to an existing stack

append stack s_ligandStackFileName [i_maxConf]

append stack os_ligandObject

this command takes a stack which corresponds to a receptor object and appends each
conformation in the stack with a conformation of the ligand. If the ligand conformation can be
taken from either from a stack file, this command will combine each conf from the main stack
with all conformations from the file. The i_maxConf argument will set the limit on how many
conformations are taken from the ligand stack (i.e. append stack "lig.cnf" 1 will
combine only the first conformation of the ligand)

append (commands) 143

If the second argument is an ICM object, each conf of the current stack will be extended with the
variables from the ligand. Now the ligand object can be appended to the receptor object with the
move command and the new combined object can use the expanded stack.

build string "ACDEF" # the "ligand" peptide
rename a_ "Lig"
translate a_ {10. 0. 0.} # shift not to overlap with a_Rec.
montecarlo v_//!?vt* # created Lig.cnf stack

build string "RSTVW" # the "receptor" peptide
rename a_ "Rec"
montecarlo v_//!?vt* # created Rec.cnf stack

move a_1. a_2. # ligand must be the 1st argument
append stack "Lig.cnf" 4 # combine up to 4 best ligand confs
minimize stack # minimizes each stack conf
load conf 1 # check them out

append two tables via two columns with matching values

append t1.A t2.B
Append rows of table t2 to table t1 by rows corresponding to unique column t2.B . The t1.A
column values do not need to be unique.

group table people {"J","C","M"} "p" {"MS","MS","MS"} "orgid"
group table orgs {"MS"} "id" {"Molsoft"} "name"
append people.orgid orgs.id
people
 #>T people
 #>-p-----------orgid-------name-------
 J MS Molsoft
 C MS Molsoft
 M MS Molsoft

This command is a particular case of a more general join command.

See also the add table command for adding rows from a column with identical column
structure (e.g. add t tt).

assign

assign sstructure: derive secondary structure from a pattern of
hydrogen bonds

assign sstructure rs [{ s_SecondaryStructTypeCharacter | s_SSstring }]
Manual assignment of a desired secondary structure annotation to a residue fragment

assign sstructure rs { s_SecondaryStructTypeCharacter | s_SSstring }
assign specified secondary structure to the selected residues rs_ , e.g.

 read pdb "1crn"
 assign sstructure a_/* "_" # make everything look like a coil
 cool a_
 assign sstructure a_/1:10 "HHHH_EEEEE"
 cool a_

This command does not
change the geometry of
the model, it only
formally assigns
secondary structure
symbols to residues.
Note: to change the
conformation of the
selected residue
fragment, according to a
desired secondary string,
use the ICM -object and

144 append (commands)

the set command
applied to both sequences
and molecular objects.

Automated derivation and assignment of secondary structure from atomic coordinates
assign sstructure rs
If the secondary structure string is not specified, apply ICM modification of the DSSP algorithm
of automatic secondary structure assignment (Kabsch and Sander, 1983) based on the
observed pattern of hydrogen bonds in a three dimensional structure.
The DSSP algorithm in its original form overassigns the helical regions. For example, in the
structure of T4 lysozyme (PDB code 103l) DSSP assigns to one helix the whole region a_/93:112
which actually consists of two helices a_/93:105 and a_/108:112 forming a sharp angle of 64
degrees. ICM employs a modified algorithm which patches the above problem of the original
DSSP algorithm. Assigned secondary structure types are the following: "H" - alpha helix, "G" -
3/10 helix, "I" - pi helix, "E" - beta strand, "B" - beta-bridge, "_" or "C" - coil.
Examples:

 nice "1est" # notice that many loops look like beta-strands
 assign sstructure # now the problem is fixed
 cool a_

See the set rs_ s_SecStructPattern command to actually set new phi, psi angles to a
peptide backbone according to the string of secondary structure.

assign sstructure segment

assign sstructure segment [ms_molecules] # ms_ICMmoleculesPreferable
create simplified description of protein topology (referred to as segment representation).
Segments shorter than segMinLength are ignored. The current object is the default. This
command will work both on un converted pdb files as well as the pdb files. However the
resulting secondary structure will be BETTER when the structure is converted and hydrogens are
added.
See also show segment, ribbonStyle, display ribbon. convert convertObject

break

is one of the ICM flow control statements. It permits a loop (e.g. for or while) to be
broken before calculations have completed.
Examples:

 for i = 1, 8
 print "Now i = ", i, "and it goes up"
 if (i == 4) then
 print "... but at i=4 it breaks, Ouch!"
 break
 endif
 endfor

See also goto .

assign residue

Assigns residue structure to a peptide or a protein. Sometimes when you read a peptide or protein
from MOL or MOL2 with no residue information present it is treated as a single residue small
molecule. This command allows to restore residue layer.

assign residue os1

Example:

build string "EACARVAAACEAAARQ"
read mol Chemical(a_ exact hydrogen) name="xxx" # read it as a single residue small molecule
assign residue a_ # restore residue structure

assign 145

Sequence(a_1.)
Sequence(a_2.)

build

The build family of functions allows one to create molecular objects
from sequence file (build s_seqfile)♦
from sequence string (build string)♦
from a linear chemical notation (build smiles)♦
from a sequence and a template by homology (build model)♦

It also adds implied hydrogens (build hydrogen) to a molecule and to find a loop in a
database (build loop)
build one atom and rebuild hydrogens

build atom as1 [simple] [s_elementName=("c")] [i_bondType=(1)]

build pseudo as_inICMobj
by default it will add a carbon to the selected atom in a non-ICM object and rebuild hydrogens for
the affected atoms. Use the strip command for ICM objects.

Options and arguments:

simple does not rebuild hydrogens.♦
s_elementName is a string with the name of the chemical element.♦
i_bondType is 1 for a single bond (the default), 2 for a double bond and 4 for a triple
bond.

♦

Example:

build smiles "CC(C)Cc1ccc(cc1)C(C)C([O-])=O" name="ibuprofen"
strip a_ibuprofen.
build atom a_ibuprofen.m//c1 "n"
build atom a_ibuprofen.m//c1 2

See also:

make bond♦
delete bond♦
delete atom♦

Recalculating dependent columns

build column T.col|T

Rebuilds all values in a dependent column T.col

build column T | T_row_selection

Rebuilds all dependent columns in the table T_ or row selection (e.g. T[12], or T.ID==123) If
column A depends on column B and column B depends on other columns, column B will be
calculated before column A.

Examples:

add column T {2 5 1} name="B"
add column T function="A + B" name="C"
add column T function="C + B" index=1 name="D"
T.A[1] = 10
build column T[1] # should change values of C and D in the first row

See also: add column function

146 break

Building object from sequence file

build s_IcmSeqFileName [library= { s_libFile | S_libFiles}] [delete]
reads s_IcmSeqFileName.se ICM-sequence file and builds an ICM molecular object. This
sequence file is different from a simple sequence file and contains three (sometimes four)
character residue names defined in the icm.res residue library file (try show residue
types to see the list).

Use command build string if you want to build an object from a string with one letter coded
sequences or a named sequence. E.g. build string "ASDGF" or "ASD;DERR" or "nh2 ala
his cooh"

To get a D-amino acid instead of L-ones simply use D as a prefix: Dala Darg. Specify N- or
C-terminal modifiers directly in the file if needed. The build command will create them in some
default conformation (extended backbone with different molecules oriented around the origin as a
bunch of flowers). Several molecules can be specified in the ICM sequence file.
Residue names may contain numbers (i.e. 4me). However, the residue numbers with a
modification character, such as 44a, 44b should contain a slash before the modification character
(i.e. 44/a , 44/b). An example in which we create a sequence of residues ala and 4me with
numbers 2a and 2b, respectively: "se 2a ala 2b 4me".
The library option lets to temporarily switch the library file. The same result may also be achieved
by redefining the LIBRARY.res array of the LIBRARY table.
The delete option temporarily sets the l_confirm flag to no and the old object with the same
name gets overwritten. Examples:

 build "def" # def.se file
 build s_icmhome + "alpha.se" # alpha.se file
 build "wierd" library="mod.res" # get residues from mod.res

 LIBRARY.res = {"icm","./myres"}
 build "s"

build tautomer

set tautomer ms|rs

prepares internal data for quick switching between different tautomer states of small molecules ms
or histidine rs_his by relative tautomer number or histidine tautomer name.

You need to call this command if you plan to sample different tautomers in montecarlo
command (~~tautomer option)

Example:

build string "AHW"
build tautomer a_/his # adds a hydrogen and hydrogen masks to allow the switching
monecarlo reverse tautomer

See also: set tautomer

Building model by homology

build model seq_1 seq_2 ... ms_Templates ... [ali_1 ...] [margin= { i_maxLoopLength,
i_maxNterm, i_maxCterm, i_expandGaps }
build a comparative model (homology model) of the input sequences based on the similarity to the
given molecular objects. The margin arguments:

name default description
i_maxLoopLength 999 longer loops are dropped

i_maxNterm 1 the maximal length of the N-terminal model sequence which extends
beyond the template

i_maxCterm 1 the maximal length of the C-terminal model sequence which extends
beyond the template

i_expandGaps 1 additional widening of the gaps in the alignment. End gaps are not
expanded

Possible modes:

build 147

simple one-to-one mode: build model seq_1 [ms_1] [ali_1]♦
N sequences - N corresponding molecules: build model seq_1 seq_2 .. seq_N
ms_1,2,..N This mode requires the minimize tether command to complete the
construction.

♦

Examples:

 l_autoLink = yes
 read pdb "x"
 read alignment "sx"
 build model ly6 a_
 ribbonColorStyle = "alignment" # grey-gaps, magenta-insertions
 display ribbon

 read pdb "2ins" # multichain
 a = Sequence("GIVEQCCASV CSLYQLENYC N")
 b = Sequence("VNQHLCGSHL VEALYLVCGE RGFFYTPKA")
 c = a
 d = b
 build model a b c d a_1.
 minimize v_//V "tz" 1000
or minimize tether
Now optimize the side chains
 selectMinGrad = 1.5
 set vrestraint a_/*
 montecarlo fast v_/!I/x*
!It means residues which are not Identical to their template residues
use refineModel to energetically optimize the model

The algorithm performs the following steps:

Alignment adjustment: modifies the alignment according to i_expandGaps, and prepare a
sequence with the ends and the long loops truncated according to the alignment and the {
i_maxLoopLength , i_maxNterm , i_maxCterm } parameters.
Building a straight polypeptide from the model sequence: builds a full-atom polypeptide chain
for this new sequence. The residues in your model are numbered according to the template and all
the inserted loops residues are indexed with 'a','b', etc. E.g. the numbering may look like this:
200,201,203,204,204a,204b,204c,205 ... This numbering allows one to follow more easily the
correspondence between the template and the model. If you do not like this numbering scheme,
just use the

align number a_/*

command and the model residues will be renumbered from 1 to the number of residues.
Backbone topology transfer: inherits the backbone conformation from the aligned (but not
necessarily identical) parts of the known template
Identical side-chain building: inherits conformations of sidechains identical to their template in
the alignment
Non-identical side-chain placement: assigns the most likely rotamer to the side chains not
identical in alignment. If you want to do more than that apply:

set vrestraint a_/* # assigns the rotamer probabilities
montecarlo fast v_/Cx/x* # x* selects for all chi (xi) angles

You can also manually re-optimize any side chains either interactively (right-mouse click on a
residue atom, then select Shake Amino-Acid Side-Chain) or from a script, e.g. for residue 14:

set vrestraint a_/* # assigns the rotamer probabilities
montecarlo v_/14/x*
ssearch v_/14/x* # systematic conformational search for the 14-th sidechain

Loop searches:

searches the icm.lps which may contain entire PDB-database for suitable loops with matching
loop ends and as close loop sequence as possible, inserts them into the model and modifies the
side-chains according to the model sequence.
The loop file can be easily customized, updated and rebuilt with the write model [append]
command in a loop over protein structures. To use your custom loop file, redefine the

148 build

LIBRARY.lps variable.
Loop refinement and storing alternatives: adjusts the best loops found and keeps a stack of loop
alternatives which can later be tested (see the Homology gui-menu).

The output

The build model command returns the following variables:
LoopTable master table containing list of all the loops, their conformation in alphanumeric
code, a measure of the deviation of the database loop ends and the model attachment sites, the
loop length and the numerical conformation type (not really important). E.g.

#>T LoopTable
#>-1_Loop------2_Conf------3_Rmsd------4_Nof-------5_Type-----
 a_ly6.a/7:10 31R21 0.1 11 1
 a_ly6.a/60:63 1RRR32 0.1 8 1
 a_ly6.a/43:46 211331RRRR 0.240658 4 1

Individual loop tables
Tables called LOOP1 , LOOP2 , etc. for each inserted loop. The tables contain the coded
conformational string, relative energy, the position of the offset in the structure database file (
offset) to be able to extract this loop again, and the rmsd of the loop ends. Example:

icm/ly6> LOOP1
#>T LOOP1
#>-Conf--------energy------offset------rmsd-------
 31R21 0. 3623594 0.092104
 31RR2 1.519275 3427772 0.083372
 R1121 1.612712 3750108 0.097777
 R1R32 1.639177 1529882 0.087113
 R1RR2 1.880638 3806768 0.079335
 31R32 3.714823 4561270 0.053853
 R3RR2 4.531406 4003324 0.042881

Writing and restoring the tethers Objects, alignments and tethers can be written to a single
binary project file (see write binary all)
Trouble shooting build model may crash. A possible reason of the crash is that the pdb file is
not correctly parsed due to formatting errors. Many pdb files still have formatting errors,
especially those which are generated by other programs or prepared manually. In this case the
read pdb command is trying to interpret the field shifts and, as with any guess work, frequently
gets it wrong. For example, try 2ins and you will see that the atom or residue names are shifted.
To fix the problem, try to use the exact option of the read pdb command.

Building loop to a model by homology

build loop rs_fragments
rebuild specified loop based in a PDB-database search (see build model).
An example:

 read object s_icmhome+"crn"
 build loop a_/20:26 # rebuild this loop

Building object from a chemical smiles string

build smiles s_smiles_string [name= s_ObjName]

build 149

create an ICM-object from the smiles -string, respectively.
Set l_readMolArom to no if you do not want to assign
aromatic rings from a pattern of single and double bonds
(and formal charge and bond symmetrization for CO2, SO2,
NO2or3, PO3) upon building. To suppress the
symmetrization and consequential charging of CO2, set the
l_neutralAcids flag to yes .

Examples:

build smiles "CCO" # ethanol

build smiles "Oc(cc1cc2)ccc1cc2N"

build smiles "Oc(cc1cc2)cc(ccc3)c1c3c2"

build smiles "C/C=C\C" # cis-2-butene

build smiles "C/C=C/C" # trans-2-butene

 # dicoronene
build smiles "c1c2ccc3ccc4c5c6c(ccc7c6c(c2c35)c2c1c1c3c5c6c"+\
 "(c1)ccc1c6c6c(cc1)ccc1ccc(c5c61)cc3c2c7)cc4"

 # NAD
build smiles "[O-]P(=O)(OCC1OC(C(O)C1O)N1C=2N=CN=C(N)C=2N=C1)"+\
 "OP(=O)([O-])OCC1OC(C(O)C1O)N=1C=CC=C(C=1)C(=O)N"

 # Hexabenzo(bc,ef,hi,kl,no,qr)coronene
build smiles "c1c2c3c4c(ccc3)c3c5c(c6c7c(ccc6)c6c8c(ccc6)c6c9"+\
 "c(ccc6)c(cc1)c2c1c9c8c7c5c41)ccc3"

 # rubrene
build smiles "c1c2c(c3ccccc3)c3c(c(c4ccccc4)c4c(cccc4)c3c3ccccc3)"+\
 "c(c2ccc1)c1ccccc1" name="rubrene"

Sometimes the build smiles command is not sufficient. The molecule needs to be optimized in the
mmff force field and several conformations need to be sampled. A more rigorous conversion is
provided by the convert2Dto3D macro.
See also: Smiles , find molecule.

Building object from string

build string s_IcmSequence [name= s_ObjName] [delete]
[i_first_amino_residue_number (1)]
create an ICM-object from a s_IcmSequence string (see the build command above). To get a
D-amino acid instead of L-ones simply use D as a prefix: Dala Darg. Specify N- or C-terminal
modifiers directly in the file if needed. The build command will create them in some default
conformation.

The build string command also understands short one line version of the full format. The
short format looks like "ASD" or "ala his" and may not start from "ml " or "se ".

The possibilities are the following:

one letter code, - it needs to be specified in upper case letters, e.g. "DD";♦
full three-four letter code, e.gg. "nter ala hise Dala cooh"♦
multiple molecules - just use a comma, a semicolon or a dot as a separator, e.g.
"WWWW;AAAA;EEE" or "ala his trp; nh3+ gly coo-"

♦

mixed one-letter and three letter code, e.g. "AST-sep-tpo-AAA" to include phosphoserine
and phosphothreonine

♦

A list of current amino acids from the icm.res file is the following:

150 build

If the sequence is provided as one letter code (e.g. "ACDTCAA") or as an icm sequence the
residue number of the first aminoacid will be set to 1 unless redefined by the optional integer
i_first_amino_residue_number.The N-terminal residue "nh3+" will then get number 0.

Option delete temporarily sets the l_confirm flag to no and the old object with the same
name gets overwritten.
Examples:

 build string "ADG-sep-HRTE" # the charged terminal groups will be added, note phosphoserine
 build string "ADGHRTE" 2 # assign res number of 2 to 1st alanine
 build string "ADGH;RTE" # two peptides, a and b
 build string "nter ala Dhis cooh" name="pep" # one peptide named a_pep.
 build string "ml a \nse nh3+ his coo- \nml b \nse trp" # molecules a and b
 build string IcmSequence("GHFDSFSDRT","nter","cooh") # translate and add termini

Using alias BS build string "se $0"
 BS ala his trp

See also: Sequence, IcmSequence.

Building hydrogens according to topology and formal charges.

build hydrogen [as_heavyAtoms] [i_forcedNofHydrogens] [cartesian]
adds hydrogens to the specified heavy atoms according to their type and formal charge. All
heavy atoms of the current object are used by default. If your have hydrogens already and their
configuration is wrong, you can delete them with the delete hydrogen command. The
number of hydrogens may be enforced if the optional i_forcedNofHydrogens argument is
specified.

Option cartesian means that no new hydrogens are added, but, rather, the existing ones are set
to new coordinates according to the heavy atoms (a better syntax for this action is set
hydrogen).

See also the set bond type command, set hydrogen .
Examples:

 read mol s_icmhome+ "ex_mol" # several small molecules
 display a_4.
 build hydrogen a_4. # added and displayed

 undisplay
 display a_3.
 build hydrogen a_3.
move one of the nydrogens
 build hydrogen a_3. cartesian # should put the hydrogen back at a correct position

Building molcart indices for substructure, similarity or exact
search

build molcart {s_tableName|S_tableNames} [sstructure|similarity|exact]

builds (or rebuilds) various keys for molcart table.

call

call s_ScriptFileName [only]
invokes and executes an ICM-script file. End the script with the quit command, unless you want
to continue to work interactively, or use it in other script.
The option only allows one to suppress opening the script file if the call command is inside a
block which is not executed. By default the script file is opened and loaded into the ICM history
stack anyway, but the commands from the file are not executed.
The absolute path of the script can be obtained by calling the Path (last) function.
Example:

 call _startup # execute commands from _startup file
 show Path(last)

build 151

Example of calling scripts inside conditional expressions.

if Type(CONSENSUS) != "table" then
 call _startup only # only means do not read if the table is already loaded
endif

center

center [{ as | grob }] [only] [static] [margin= r_margin]
centers and zooms the screen on selected atoms as_ or graphics objects. Default objects: all
existing atoms and graphics objects. The r_margin argument is given in Angstrom units and can
be used to set a relative size of the selection and the frame. Normally all dimensions of the
molecule/grob are taken into account, so that the molecule can be rotated without changing scale.
Options:

only : do not rescale, translate only, i.e. move the selected atoms to the center of the
graphics window

♦

static : scale only according to the visible X-Y dimensions and the margin. Do not
take the Z-dimension into account in the size calculation as if you do not intend to rotate
objects. That implies an assumption that the orientation of molecules/grobs/maps will not
be changed.

♦

Examples:

 nice "1est"
 center
 center Sphere (a_/15:18)
 center a_/1:2 only # keep the scale

 read grob s_icmhome+"beethoven" # a genius
 display beethoven smooth
 center beethoven static # 10 A margin

clear

clear

clear terminal screen
clear selection clear the graphical selection as_graph

Example:

nice "1crn"
as_graph = a_/1:5 # select five residues
clear selection # nothing again

clear pattern chemarray

clear SMARTS search attributes in the input chemical array.

Example:

add column t Chemical("[C;D2]")
clear pattern t.mol # D2 attribute will be cleared

See also: Exist pattern

clear graphic [os] clears display properties , graphic representation memory and reset the
graphic planes to the default.

clear error

clears all error and warning bits previously set by ICM. See also Error (i_code)

152 call

color

The color command colors different shell objects, their parts, or different graphical representations
with by colors specified in various ways. The main color commands are listed below:

color all|{wire|xstick|cpk|surface|skin|[residue|atom|variable|string]
label|ribbon [base]} color as [full]

color as|rs|ms {molecule|object|alignment | R_values [window=R2_fromTo] }
[full] [all]

color background|volume color # volume for the depthcuing fog color

color chemical X_chemarray {P_predictiveModel | pharmacophore }

color site ms1 index=i_site|I_sites color_spec

color distance|hbond|angle|torsion P_distParray color

color g accessibility r_depth ([0:1]) # occlusion coloring

color g [add|pseudo] color as GROB.atomColorRadius= r

color g map [m_valuesForColoringGrob]

color g|grob potential [fast] [reverse | simple] [ms_sourceAtoms] #
electrostatic coloring

color map_Name [I_colorTransferFunction] [R2_fromTo] [auto]

Options:

full : allows one to set colors for atoms that are not displayed in addition to the
displayed ones. The default only changes colors of the atoms visible in a given
representation. (this option has been added in versions compiled after Sep 15, 2009). This
option replaces the set color command for batch coloring.

♦

all : colors all graphical representations (by default it colors only the specified ones)♦
See also: set color to set atom or residue color directly and without graphics. See also: icm.clr
for allowed color names and their r,g,b values; the plot command needs ICM colors , an
sarray can be returned with the Color(R) command.

Specifying colors in ICM

There are various ways to specify a color in ICM: by name, index or RGB representation.

color_name | color[i_index] | i_Color | r_Color | rgb=rgb_color

Specifying color by name:

color red

Other color name examples: black, white, grey, blue, red, yellow, green, orange, magenta,
lightblue. Color names may be observed and changed in the icm.clr file.

Requesting contrasting colors by index:

color color[4]

This call uses color number 4 from the list of "named" colors (first section of the icm.clr file).
Colors with their numbers can be listed by the show color command and their total number is
accessible via the Nof(color) function. This mode is useful if you need to color selected
elements with contrasting colors rather than with a smooth spectrum.

Example:

 read pdb "1crn"
 display ribbon a_1crn.

color 153

 show colors
 color a_/1:5/* color[89]
 for i=1,Nof(a_/*)
 color a_/$i color[i] # speckled coloring
 endfor

Specifying color by index:

color 3

Color indices are taken from the "rainbow" section of the icm.clr file. Currently there are 128
colors (i=0,127) in this section and they form a smooth transition from blue to red via white (not
really a rainbow). You may change the "rainbow" colors in the icm.clr file. Number 128 becomes
blue again. Using integer color indices is convenient for automatic coloring within ICM loops.

Example:

 display "Colors"
 for i=1,255
 color background i
 print i
 endfor

See also color background example .

Specifying colors interpolated between indexed colors:

color 4.5

The color 4.5 will be the average between the "rainbow color" 4 and "rainbow color" 5.
Specifying colors by their RGB representation

Color is defined as a combination of red, green and blue components. The triple may be specified
in different formats:

rgb = R_3rgb

- as an array of 3 reals in 0..1 range

rgb = I_3rgb

- as an array of 3 integers in 0..255 range

rgb = s_#rrggbb

- as a string where each component is defined by two characters in hexadecimal form. Optionally
prefixed with a hash symbol ("#").

Examples setting magenta color (mixture of red and blue):

color rgb={255,0,255}
color rgb={1.,0.,1.}
color rgb="#ff00ff"
color rgb="ff00ff"

In case the requested RGB color is not available for the graphics system, ICM finds the closest
color.

Coloring molecular objects

The main color command:
color [as] graphic_representation [color_spec]

color [as] graphic_representation [I_colors | R_colors] [window = R_2MinMax]

graphic_representation, when specified, must be one of the following

wire | hbond | cpk | ball | stick | xstick | surface | skin | site | ribbon [base]

154 color

This command colors selected atoms (as_) or graphics object(s) according to the specified
color. It is possible to either specify a single color color_spec, or provide an array (
rarray or iarray) of colors to color each element of the selection according to a certain
property, as electric charge or Bfactor.

The scale is determined by the minimal and the maximal elements of the array, independently of
the array length. First the numbers in the array are scaled so that its minimum corresponds to the
first color in the "rainbow" section and its maximum to the last color. Then the scaled numbers are
applied sequentially to the elements of the selection. If the number of elements in the array is
shorter than the number of elements in the selection, the array is applied periodically. If the color
array is longer than the selection, the excessive numbers are not used for coloring but (attention!)
they will be used for scaling.

The window={ minValue, maxValue } option allows one to provide a range for color
mapping. It will be used instead of the array minimum-maximum value range as the range from
which the color array elements will be mapped into the rainbow colors. Moreover, values in the
color array will be clamped to be in the window range.

In the following example the Bfactor(a_/ simple) values which may range from large negative
values to large values will be clamped to the [4.,40.] range.

 nice "1ekg"
 color ribbon a_/ Bfactor(a_/ simple) window=4.//40.

Another example:

 read object s_icmhome+"crn"
 display a_crn.
 color a_//* Charge(a_//*) window={-1.,1.}

It is also possible to show a color bar in the graphics window by changing the
GRAPHICS.rainbowBarStyle property.

Each of the command arguments has a default:

objects as_: the current object (a_) only. Hint: to color all objects, use a_* .♦
graphic_representation: all except ribbon. Ribbons should be colored explicitly using a
color ribbon command.

♦

color_spec. The default coloring is by atom type, except for the ribbon representation
which is colored by secondary structure by default.

♦

All default values can be changed by editing the icm.clr file.

In DNA and RNA ribbons, bases can be colored separately (e.g. color ribbon base
a_1/* white), the default coloring being A-red, C-cyan, G-blue, T or U-gold.

Examples of how the defaults work:

 nice "1crn"
 display # also displays wire
 color # all except ribbon colored by atom type
 color ribbon # only ribbon of a_ by secondary structure type
 color ribbon red # only ribbon as specified
 color a_/1:10 ribbon yellow # parts

More examples:

 build string "ASDWER" # hexapeptide
 display
 color a_/1:4 green # the first four residues in green
 color # return to default colors by atom type

 read pdb "1crn"
 display a_1crn. only
 # color atoms according to their B-factor
 color a_1crn.//* Bfactor(a_1crn.//*)
 # crambin's ribbon
 # from blue N-term to red C-term gradually
 display a_/* ribbon only

color 155

 color a_/* Rarray(Count(1 Nof(a_/*))) ribbon

 # another crambin's ribbon
 # from blue N-term to red C-term gradually
 # thick worm representation
 assign sstructure a_/* "_"
 GRAPHICS.wormRadius= 0.9
 display a_/* ribbon only
 color a_/* Count(1 Nof(a_/*)) ribbon

Coloring 2D molecules in a chemical table

color chemical X_chemarray P_model

calculates atom contributions to the total value calculated by the P_model if this model is

linear. (PLS)♦
built using counted fingerprints (no external column-descriptors)♦

color chemical X_chemarray pharmacophore

color by built-in pharmacophoric definitions The list of definitions can be listed like this:

icm/def> show pharmacophore type
name codesmarts color

Negative [Qn]C(~[O;D1])~[O;D1] #87cefa
Negative [Qn]P(~[O;D1])(~[O;D1])(~[O;D1])~*#87cefa
Negative [Qn]S(~[O;D1])(~[O;D1])(~*)~* #87cefa
Positive [Qp][N;D3;$(N(-[*;^3])(-[*;^3])-[*;^3])]#fa8072
Positive [Qp][N;D2;$(N(-[*;^3])-[*;^3])] #fa8072
Positive [Qp][N;D1;$(N-[*;^3])] #fa8072
Positive [Qp]C(~[N;D1])~[N;D1] #fa8072
HBA [Qa][O,S&v2,N&^2&X2,N&^1&X1,N&^3&X3]#98fb98
HBD [Qd][!C;!H0] #ee82ee
Aromatic [Qm]a #ffa500
Hydrophobic [Qh][C&!$(C=O)&!$(C#N),S&^3,#17,#15,#35,#53]#e0ffff

How to color grob surface by depth

color accessibility g_mesh [r_maxShade]

modify the color of each surface element of a grob to create perception of depth. The procedure
calculates for each surface element (triangle) the extent it is occluded from ambient light by other
parts of the molecule, and makes the elements darker proportionally to occlusion. Thus, concave
regions such as pockets become dark since the surrounding bulk of the protein blocks the light
from most directions, while protrusions remain bright since they are well exposed. Repeated
application of the command or using a larger r_maxShade (the default is 0.8) generates a more
dramatic shading of the shape.

Example:

color accessibility g_electro 0.7
color accessibility g_electro 0.7 # do it two times for a more dramatic effect

To be able to come back to the initial coloring you may need to do this:

 clrs = Color(g_electro)
 # change grob color, e.g. with color accessibility
 color grob clrs

Uniquely coloring by object, molecule, residue or atom

color graphic_representation [as_molecules] [object|molecule|residue|atom]
a special command to color the displayed and selected molecules differently. The graphic
representation field can be either empty, or one of those: wire xstick cpk surface
skin ribbon, residue label, atom label, site label, variable label
. E.g. select graphically some atoms and do this:

156 Coloring 2D molecules in a chemical table

color xstick as_graph & a_*.//c* molecule
color ribbon as_graph object
color cpk as_graph molecule
color residue label as_graph residue

color background

color background color_spec

sets the background to the specified color color_spec in one of the supported formats
.

Examples:

color background blue

color background lightyellow

color background rgb={255,255,255} # white. integers in 0..255 range

color background rgb={0.,1.,0.} # green. reals in 0.. range

See also: rgb, color background example .

color by alignment

color as [wire|cpk|skin|ribbon|xstick|ball|stick|surface..] alignment
colors specified graphics representations of the selected residues by the colors of an alignment as
you see it in the alignment window of the Graphics User Interface. The color of a residue is
controlled by the following factors:

residue type♦
consensus character at the residue position in the alignment♦
colors as provided by the CONSENSUSCOLOR table.♦

Note that the CONSENSUSCOLOR table can be divided into sub-sections, and the active
subsection can be selected from GUI.
Example:

 read sequence s_icmhome+"sh3"
 nice "1fyn"
 make sequence a_1 # extract 1st sequence
 group sequence sh3
 align sh3

 color a_1 ribbon alignment
 display skin white a_1 molecule
 color a_1 alignment # colors all representations including skin

color grob

Color is a powerful mechanism of showing extra information on ICM grobs ICM grobs may
have individual colors assigned to each vertex, which allows one to use grob coloring to illustrate
properties of 3D surfaces.

The simplest way to set grob color is to paint it to a single color.

color g_grobName color_spec

colors the whole g_grobName grob to the color_spec color.

color grob color_spec

colors all grobs to color_spec.

Check out the color specification section for available color_spec options.

How to color grob surface by depth 157

Example:

torus = Grob("TORUS",3.,1.)
display torus
color torus black # paint it black
color background white # this should improve the visibility
color torus rgb={127,255,212} # aquamarine, as some people call it

Automatic assignment of different colors to different grobs

color grob unique
In addition to the main color command which colors grobs there is a special command to
automatically assign the displayed grobs to different colors.

See example for the split grob command.

Coloring grob by matrix of RGB values for each vertex.

color g_grob M_rgbMatrix
allows one to set individual colors to grob vertexes. Colors are specified in RGB format in the
M_rgbMatrix.Each row of the matrix is an RGB triple. This type of matrix may be obtained by the
Color(g_grob) function.

Examples:

torus = Grob("TORUS",3.5,0.5)
display torus smooth
n = Nof(torus)
R_rgb = Count(1 n/2)/Real(n/2) // Count(n-n/2 1)/Real(n-n/2)
add matrix M_rgb R_rgb
add matrix M_rgb Rarray(n,0.3)
add matrix M_rgb Rarray(n,0.7)
color torus Transpose(M_rgb)

This command allows one to create special effects, like gradual disappearance of a grob into
background:

set the scene
color background black

uncomment these lines to get a more sophisticated example
torus = Grob("TORUS",3.5,0.5)
display torus smooth
color torus blue

the active grob
g = Grob("SPHERE",3.,5) # a wire sphere
display g smooth
color g Random(Nof(g),3, 0., 1.) # color randomly
M_colors = Color(g) # extract current colors
make the sphere disappear (modern poetry)
for i=1,20 # shineStyle = "color" makes it disappear completely
 color g (1.-i/20.)*M_colors
endfor
for i=20,1,-1 # bring the sphere back
 color g (1.-i/20.)*M_colors
endfor

Coloring grob by proximity to atoms

color g_grobName as_closeAtoms color_spec [add|pseudo]

colors vertices of the grob which are less than GROB.atomSphereRadius to any of the
selected atoms. The default value for the radius is 4Å.

Options:

add : adds van der Waals radius for each atom to the GROB.atomSphereRadius
parameter

♦

pseudo : for hydrogen bonding acceptors considers distances from LONE-PAIR centers
at 1.7A distance from the acceptor atoms. If an atom is not an acceptor, the atom itself is

♦

158 How to color grob surface by depth

considered. Note that a_//HA is a selection for hydrogen bonding acceptors and a_//HD is
the donor selection.

Example in which we color 1.3 radius sphere around the lone pairs of hydrogen bonding
acceptors:

color a_REC.//HA g_pocket magenta pseudo GROB.atomSphereRadius=1.3

See color specification for the definition of color_spec.
See also: Grob(g R_6) function to return a patch of certain color.

Example:

nice "1crn"
make grob skin a_1crn. name="g_1crn"
display g_1crn
color g_1crn green
color g_1crn a_1crn.//1:60 red # color a patch by atom proximity

See also: make grob skin, make grob potential .

Coloring surfaces by 3D scalar field

color g_grob map map_Name I_transferFunction R_2mapValueBounds [color_spec]
colors vertices of the g_grob by the values of the map_Name . The map values at each grid point
are first clamped into the R_2mapValueBounds range, then this range is divided according to the
number of elements in the transfer function and each point is colored according to the value of the
transfer function. The optional color_spec parameter is explained in the color
specification section.
The new color will be mixed with the current color of grob points. Therefore if you want to color
each of 3 RGB channels with a different normalized property value, first color the grob black, and
then color with the red , green , or blue color depending on which channel you intend to use.
Note that zero in the transfer function correspond to no color . Corresponding grob nodes will not
be colored.
Transfer function is the same to the one in color map but has certain differences. This
function (e.g. {0 0 0 1 2 3}) contains any number of positive integers. 0 means "do not
color", and each positive value is a scaling factor for the color provided as an argument, or a
parameter to select a color from a predefined rainbow. In the above example, the
R_2mapValueBounds range will be divided into 6 ranges and each value range will be colored
accordingly.
Example in which we color the vertices of a grob by inverted values of truncated hydrophobic
potential:

 read obj s_icmhome+"data/xpdb/1sre.ob"
 display a_
 make grob skin a_2 a_2 name="g_pocket" # create g_pocket
 make map potential "gs" Sphere(g_pocket a_1)
 compress g_pocket 1.
 color g_pocket black
 color g_pocket map -m_gs { 0,0,0,3,4,5 } { 0. 0.5 } green
 display g_pocket
 h = Transpose(Color(g_pocket))[2] # extract hydrophobicity

Coloring grob by electrostatic potential

color g|grob potential [fast] [reverse | simple] [ms_sourceAtoms]

(REBEL feature) calculates electrostatic potential
waterRadius away from the surface of the g_skin
graphics object and color surface elements according to this
potential from red to blue. Important the location of the
center of the water probe is determined by the grob normal (
you can change it with the set g_ reverse command).
If you compute the potential at a blob outside the molecule
but with the normals point outwards, use the reverse
option. To compute potential without any positional
correction including normals use the simple option.
The potential is calculated either by the REBEL boundary
element solution of the Poisson equation, or, if option fast
is specified, by a simple Coulomb formula with the
dielConstExtern dielectric constant (78.5 by default).

How to color grob surface by depth 159

The local value of potential is clamped to the range [-maxColorPotential,
+maxColorPotential]. It means that a potential larger than maxColorPotential is
represented by the same blue color, while values smaller than maxColorPotential are
represented by the same red color. The real range is reported by the command and you can adjust
maxColorPotential to cover the whole range. To suppress the absolute maxColorPotential
threshold and use auto-scaling instead set maxColorPotential to 0. The color bar with values
will appear according to the GRAPHICS.rainbowBarStyle preference. There are two macros
to generate potential-colored skins: rebel and rebelAllAtom
The second one (given below) considers all the atoms (including hydrogens) with their charges.
The mean value of the potential at the surface is returned in r_out , and the root mean square
deviation of the potential is return in r_2out shell variables, respectively. The averaging is free
from bias due to uneven density of grob points. It uses equal size cubes distributed evenly over the
surface. The number of representative cubes used for the calculation is return in i_out .

Examples:

read object s_icmhome + "crn"
display a_1
make grob skin a_1 name="g_crn"
make boundary a_1
display g_crn
color g_crn potential

See also: electroMethod, make boundary, delete boundary, show energy
"el", Potential().

color label

color label [as] color_spec

color label as [I_colors | R_colors]
Colors labels associated with the selected residues or atoms. A simple option is to specify a single
color using color specification formats. It is also possible to provide colors for each
atom using an iarray I_colors or rarray R_colorsIf no atom selection is specified, all
labels are colored.
Examples:

 read object s_icmhome + "crn"
 display a_//n,ca,c white
 display label residue
 color label a_/* Count(1 Nof(a_/*))
 #
 color label a_/5:10 magenta

 read object s_icmhome + "crn"
 display a_//n,ca,c white
 display label residue
 color label lightyellow

See also: display label, color object, resLabelStyle .

color map

color map_Name [I_colorTransferFunction] [R2_fromTo] [auto]
color the current or the specified map according to the color transfer function supplied as
I_colorTransferFunction.
The default: By default the maps are colored in such a way that points with zero map values
become transparent while values above and below zero are colored by shades of blue or red,
respectively.
The R2_fromTo array of two elements allows one to set the lower and the upper boundaries for the
red and blue colors, respectively. All values above and below will be trimmed to the range. For
electrostatic maps the array is set to -5.,5. by default.
In the auto mode all grid points are divided to Nof(I_colorTransferFunction) color classes
according to the normalized function value (sigma units around the mean value) and each class is
colored as specified in the I_colorTransferFunction (0 means transparent).
If the number of I_colorTransferFunction elements is odd (2* n+1) the class boundaries are the

160 How to color grob surface by depth

following:

-infinity♦
Mean- n *sigma,♦
Mean-(n -1)*sigma,♦
Mean-(n -2)*sigma,♦
...♦
Mean- 1*sigma,♦
Mean♦
Mean+ 1*sigma,♦
...♦
Mean+(n -1)*sigma,♦
Mean+(n)*sigma.♦
+infinity♦

For even number of elements (2* n), boundaries are shifted by half a sigma, so that the middle
class is between Mean-0.5*sigma and Mean+0.5*sigma. Color codes are in arbitrary units since
the array is normalized so that the highest value corresponds to the red color. Deep blue is 1. Zero
is always the transparent color (no coloring). The spectrum is defined in the icm.clr file.
Examples of coloring:

{0 0 0 0 0,0 0 0 3 10} default map coloring, color only high densities (blue
from 3 to 4 Sigma, red >4 Sigma). Comma only shows you where the mean is.

♦

{0 1 0} color only Mean+- 0.5*sigma nodes, ignore high and low densities.♦
{1 0 2} color low and high densities by different colors, ignore densities around the
mean.

♦

{1 2 3 0 5 6 7} similar the previous one, but with more grades♦
Examples:

read pdb "1crn"
make map potential name="mpot"
color mpot {1 2 0 4 5}
OR
color mpot

color volume

color volume color_spec

determines the color of the fog in the depth-cueing mode (activated with Ctrl-D). Format of
color_spec is explained here.

For example, if you want that distant parts of you structure are darker (black fog), but the
background is sky-blue, you will do the following:

color background lightblue
color volume black

compare: setting conformation comparison parameters
for the montecarlo command

compare vs | as [static | chemical | surface] | [compareMethod=..]

sets a metric for calculating a distance between different conformations in a stack .
The goal of the two following compare commands is to provide a desired setting before the
montecarlo command and stack operations. This command defines a filter which is used to
decide how many and what conformations from the stochastic optimization trajectory are kept as
low energy representatives of a certain area in conformational space. This metric is also used for
the subsequent stack manipulations, e.g. compress stack.
The compare command defines the distance measure between molecular conformations which is
used to form a set of different low energy conformers in the course of the stochastic global
optimization procedure. The defined distance is compared with the vicinity parameter and
determines whether two conformations should be considered different or similar (i.e. belonging to
the same slot in the conformational stack). The compare command determines the
spectrum of conformations that will be retained in the stack, accumulated during a montecarlo
procedure. The default comparison set is a set of all free torsion variables (see compare vs_).
Other methods compare atom RMSD with and without superposition, using chemical

How to color grob surface by depth 161

superposition, and compare only the atoms in the interface with a molecule (compare
surface).

Please note that the compare command can change the compareMethod preference. Example:

 montecarlo v_//2 compareMethod ="chemical static" # suitable for docking

See also montecarlo, compareMethod.

Compare by deviations of cartesian coordinates with or without
superposition

compare [static] as
The command needs to be run when Cartesian root-mean-square deviation for positions of
selected atoms (as_) as a distance measure between stack conformations. Set the vicinity
parameter to about 2.0 Angstrom if you want to consider conformations deviating by more than 2
A as different conformational families.
By default the selected atoms in different conformations will be optimally superimposed before
the coordinate RMSD is calculated. The static option suppresses superposition and measures
absolute deviation of the coordinates between conformations. The static option is relevant for
ligand atoms in docking simulations to a static receptor.
The result of this procedure is that an internal flag is set to perform cartesian RMSD calculations
during montecarlo run, and a set of selected atoms is marked for comparison.

Compare by deviations of internal coordinates/torsions.

compare vs
use angular root-mean-square deviation for selected internal variables (usually torsion angles) as
distance (set vicinity to at least 30.0 degrees accordingly)
Examples:

 compare v_//phi,psi # compare ONLY the backbone angles
 vicinity=30.0 # consider two conformations
 # with phi-psi RMSD < 30. as similar

 compare a_2//ca static # compare Cartesian deviations
 # of the second molecule's alpha-carbon atoms
 # without prior optimal superposition
 vicinity=3.0 # consider two conformations with second
 # molecule deviation < 3 A as similar

Compare by coordinate deviations of the surface patches only

Compare by surface patch rmsd: dynamically selecting comparison atoms

compare surface as_currentObjSelection | as_staticReferenceObject.
Similarly to compare static as_ it will look at absolute deviations of coordinates, but the
comparison will be applied dynamically only to a patch sub-selection of the atoms in the current
object in the selectSphereRadius (default 5. A) proximity to the non-current-object atoms
of the as_ selection. The selection typically would look like this: a_activeIcmObject.//ca |
a_staticPdbReceptorObject.//ca
Example:

 compare a_runObj.//ca | a_recName.//ca surface

Note that this command dynamically calculates a subset of as_currentObjSelection near
as_staticReferenceObject . This distance (static RMSD) is used inside montecarlo command or
in compress stack .
The surface mode is useful for protein-protein docking simulations when you want to measure the
sRmsd distance between the current conformation and the stack conformations ONLY for the
interface residues of the moving molecule. The interface residues are dynamically determined as
those which are close to the static receptor specified in the second part of the selection. This static
receptor should reside in a separate object.
The vicinity size is determined by the selectSphereRadius parameter
An example in which we sRmsd-compare only those carbons of barstar which are next to the
barnase surface.

162 compare: setting conformation comparison parametersfor the montecarlo command

 read pdb "1bgs" # a complex
 read pdb "1a19.a/" # the protein ligand only
 convert
... # make maps and other actions to prepare protein-protein docking
 compare a_//c* | a_1.1 surface # will use only
 selectSphereRadius = 7.
...
 montecarlo

compress

compress grob vertices, shell objects, or stack conformations
compress graphical objects

compress g_grobName1 g_grobName2 .. [r_minimalEdgeLength=.5]

compress grob [selection] [r_minimalEdgeLength=.5]
simplify a grob (graphical object) by eliminating/merging small triangles into bigger ones. This
procedure allows one to generate very "low-resolution" molecular surfaces. The default value of
the r_minimalEdgeLength is 0.5 Angstroms. Typically compression with the 1. A minimal edge
parameter reduces the number of triangles by an order of magnitude. The compression algorithm
does not change the connectivity of the surface. Therefore you can still split the compressed
grob and find the fully enclosed cavities.
The compress command returns the new number of verteces in i_out and the new number of
triangles in r_out variables, respectively (for the last compressed grob only).
Example:

read pdb "1crn"
make grob skin smooth name="g_1crn" # creates a grob with many triangles
display g_1crn
compress g_1crn 1. # significantly reduces the number of triangles in the grob
display g_1crn
compress g_1crn 4. # further simplification of the grob
display g_1crn

It is important in this example to use the make grob skin command with the smooth option,
since it closes the cusps.

See also:

delete all compress # to delete all objects/grobs/maps not used in slides♦
compress binary file.icb # compresses .icb file files♦

compress stack of molecular conformations

compress stack [fast] [i_fromConfNumber i_toConfNumber] [r_enerDiff]

Remove similar and/or high energy conformations from the conformational stack.
During a montecarlo run, some conformations of the generated conformational stack
may be substituted by newly calculated ones with lower energies. New conformations may violate
the initially correct distribution of the conformations in the slots of the stack as defined by the
vicinity parameter and by comparison mode specified by the compare command. The
compress command compares all the pairs of the stack conformations, identifies pairs of
conformations in which two conformations are separated by a distance less than the vicinity
threshold, and removes the higher energy stack conformation from each close pair. Optional
arguments i_fromConfNumber and i_toConfNumber define a subset of the conformations in the
stack which are to be analyzed and compressed (if any). The whole stack (from the first to the last
conformations) is processed by default.
Note that if two close conformations are compressed into the better energy one, the number of
visits of the resulting conformation will be a sum of the two numbers of visits.
The fast option applies an iterative compression algorithm which can be several orders of
magnitude faster but the result may slightly differ form the default compress. The fast algorithm
algorithm performs the following steps:

sort conformations by energy1.
start from the lowest energy conformation2.

compress 163

find all conformations with higher energy than the current conformation within
vicinity .

3.

delete similar conformations with higher energies and compress stack4.
move to the next conformation in the new sorted stack, make it current and go back to
step 3

5.

See also How to merge and compress several conformational stacks
Example (define a distance and compress) we generate two stacks, merge them and re-compress
two sets with a different comparison criterion:

 build string "VTLFVALY"
 mncallsMC = 5000
 montecarlo # generates stack
 write stack "f1"
 delete stack # clean up and
 montecarlo # generates another stack
 read stack append "f1" #
 compare v_/2:5/phi,psi # compare settings are different
 vicinity = 40. #
 compress stack fast
 vicinity = 20. # new vicinity
 compress stack
 compress stack 2.0 # remove confs > 2 kcal/mole higher than the lowest one

See also: compress binary

compress files from ICM

compress binary s_inputfile [filename=s_gzipfile | delete]

Compresses the s_inputfile file using GZIP algorithm. If the filename is specified, the
compressed file will be saved as s_gzipfile.If the delete option is specifeid, the compressed file
replaces the input file (in place compression). Otherwise (by default) .gz extension is added to
produce the compressed file name.

Example:

read pdb "1crn"; make map potential name="x"; write map x # create x.map file

compress binary "x.map" delete # compress in place

See also:

delete sequence compress♦
delete all compress # leave only objects in slides♦
compress grob♦

connect

connect [append] [none] [ms_molecule | g_grob]

connect none

connects selected
molecules to the
mouse for independent
rotation (by the
LeftMouseButton) and
translation
(MiddleMouseButton)
with respect to the
original coordinate
frame.

164 compress

Option append will add selected molecule to the previously connected molecules
Note, that rotations/translations in the connect mode actually change the atomic coordinates of
the selected molecules and keep the coordinate system unchanged in your graphics window.
To restore the usual global mode (i.e. all objects/molecules are disconnected and the mouse does
not change their absolute positions, but rather the point of view), hit the Esc key when the cursor
is in the graphics window. To restore the global mode temporarily press the Shift button.
Use: connect none to switch back to the global connection Examples:

read pdb "1eff"
copy a_1eff. # create something else in the scene
display ribbon a_*.
connect a_1eff.
move it around now
connect none # disconnect

Connect to a Mysql database or database file

connect molcart {S_host_user_pass_db|s_host s_user s_pass s_db} [name=s_connectionID]

Connects to the database server specified by the command parameters. It is possible to also
specify the s_connectionID which will be assigned to the connection. Parameters returned by the
Name(sql connect) may be used in this command.

connect molcart on

Reconnects to the current Molcart.

connect molcart refresh

Reconnects to Molcart using settings stored in user's preferences.

connect molcart filename=s_file [s_db] [name=s_connectionID]

Opens a Molsoft database file. Database name s_db and the s_connectionID may be
specified.

connect molcart s_connectionID off

Disconnects specified Molcart connection. See molcart connection options for
explanation

connect molcart local off

Closes all open database files.

See also: molcart, molcart connection options, list molcart, set molcart,
Name molcart.

connect 165

continue

continue

skip commands until the nearest endfor or endwhile .
Example:

for i=1,5
 if i==3 continue # do not print 3
 print i
endfor

See also: flow control statements.

convert

convert [os_nonICM]
[auto|charge|exact|heavy|graphic|selection|simple|tether|selftether|tree=s_smiles]
[s_objName]

convert as_icmRootAtom [sstructure=as_scaffold] [auto] # root the icm-tree at as

convert rs_patches ..
the first convert command converts an incomplete non-ICM-object (e.g. object of type 'X-Ray'
resulting from the read pdb command) into a true ICM-object for which you may calculate
energy, build a molecular surface and perform all operations.

Options:

auto - convert in place, preserve graphics and selections, e.g. convert auto
selftether

♦

charge - transfer charge from the original♦
exact - do not use the icm.res library by res name, convert as is.♦
heavy - regularization (obsolete)♦
graphic - transfer graphical attributes♦
selection - transfer selection (as_graph)♦
simple - special mode for disjoint chemicals♦
tether - impose tethers to the original (use selftether for in-place or auto mode)♦
tree= s_smiles - build the tree according to the smiles topology (small mol. convertion)♦
selftether - imposes selftethers to the original coordinates, set field for the
added heavy atoms ("_ADDED") and shifted upon conversion atoms ("_SHIFTED"), e.g.
display cpk Select(a_// "_ADDED")

♦

Description
There are two principally different modes of conversion. In the default mode the program looks at
the residue name and tries to find a full-atom description of this residue in the icm.res file.
This search is suppressed with the exact option.
Hydrogen atoms will be added if the converted residues are known to the program and described
in the icm.res library. If the object selection is omitted, the current object will be
converted. If default s_newObjectName is generated by adding number "1" to the source object
name. If s_newObjectName is the same as a name of the input object, the input object will be
overwritten. (in-place conversion)

The default convert command is best used to convert PDB entries which have explicit residue
descriptions and usually do not have hydrogen coordinates. In this mode each residue name is
searched in the icm.res file and the coordinates of the present heavy atoms are used to calculate
the internal geometrical variables (bond lengths, bond angles, phase and torsion angles) for the full
atom model.

Every ICM atom will store the original coordinates as selftether (try show a_// and watch for
the ts= x , y , z record. Later these selftethers can be used with the "ts" term.
The exact option: converting protein with unusual amino-acids
Some pdb-entries may contain non-amino acid residues, or modified amino-acid residues which do
not need to be replaced by standard full atom library entries with the same name . In this case use
the exact option. This option suppresses interpretation by short residue name and converts the
existing atoms and bonds in single-residue molecules (amino acids in peptides and proteins will

166 continue

still be extended by hydrogens upon conversion, to suppress that conversion write the molecule as
mol and read it back, then convert exact). Option exact may be necessary because chemical
compounds with a four-letter short name identical to one of the amino-acid residues, could be
mistakenly converted into an amino-acid with a corresponding name.
The charge option
Normally, upon conversion, the atomic charges are taken from the icm.res library entries.
Option charge tells the program to inherit atomic charges from the os_non-ICM-object. For
small molecules, use set charge, set bond type and, possibly, build hydrogens
before conversion of a new compound. i_out will contain the number of heavy atoms missing
from the pdb-template.

The graphic option preserves the graphical representations and colors as is.

The selection option preserves the atom selection bit during the conversion. Useful for
in-place convert.

The sstructure= tree_substructure option makes sure that the tree is drawn through the
substructure. It also needs a consistent entry atom provided as as_newRoot argument.

The auto option converts in-place preserving graphics and selection information. This is a
convenient shortcut for the following combination:

graphic♦
selection♦
s_newObjectName is set to the input object name♦

The smiles option (an addition to auto option) allows one to explicitly derive a tree
structure from the smiles string. If the smiles string matches only part of the molecule then the
rest of the tree will be built according to the default rules.

Additional cleanup
Actually more procedures need to be performed to prepare a functional object from
crystallographic coordinates, e.g. identifying optimal positions of added polar hydrogens,
assigning the most isomeric form of histidine , and finding a correct orientation of side-chain
groups for glutamine and asparagine.
We recommend the convertObject macro instead of the plain convert command to achieve
those goals.
Refining the model
To refine a model use the refineModel macro.
convertObject macro
The convertObject macro is a convenient next layer on the convert command. The macro
may convert only a few molecules out of your pdb file, optimize hydrogens and do some other
useful improvements of the model.

Output.

the converted object♦
i_out : the number of heavy atoms missing from the pdb-template,♦
r_out : rmsd from the pdb-template atoms (non zero for residues with bad coordinates),♦
i_2out : the number of deviating by more than 0.2A atoms heavy atoms,♦
r_2out : the maximal deviation♦

Selection tags (Select (as tag) returns the selection) :
"built" -heavy atoms that were missing in a pdb (e.g. some lys and arg in 1qz5)♦
"shifted" -atoms that shift after conversion (e.g. silly lysines in 1qz5)♦

Example:

read pdb "1crn"
display
as_graph = a_//c*
convert auto # converts in-place preservinf slection and graphics
strip virtual
convert # creates new a_1crn_1. object

If single atom is provided as an input selection it will be taken as a new ICM tree root. See
convert and reroot for details.

See also:

convert 167

strip♦
convertObject♦
convert2Dto3D♦
set cartesian♦
selftether♦
Select (as s_tag)♦

Comparing convert, minimize tether and regularization.

It is important to understand the difference between the convert command, the minimize
tether command and the regularization procedure implemented in the macro regul
.
All three create ICM-objects from PDB coordinates, but details of generated conformations and
the amount of energy strain will differ.
We recommend to use convertObject macro for most serious applications involving energy
optimization.
convert

uses all-atom residue templates (including hydrogens) from the icm.res library♦
creates temporary ICM-library descriptions for unknown residues♦
makes geometry identical to the PDB coordinates: bond length and bond angles may be
distorted.

♦

the converted structure will be energy strained because of common imperfections of the
PDB entries and the hydrogen atoms added by the procedure

♦

C-alpha-only structures will not be properly converted because a special prediction
algorithm is required to extrapolate the coordinates of all atoms from C-alpha atom
positions.

♦

these objects are good enough for graphics, skin, secondary structure assignment, rigid
body docking. They are not good for loop modeling and side-chain modeling.

♦

needs to be followed by polar hydrogen placement and histidine state prediction (
implemented in the convertObject macro)

♦

minimize tether threading a regular polypeptide through an incomplete/gapped set of
coordinates.

you need to create a sequence file first and use the build command;♦
you will need to create the missing residues manually, say, with the write library
command;

♦

build will use all-atom residue templates including hydrogens, and will preserves the
fixation;

♦

the linear chain with fixed idealized covalent geometry or, actually, any fixation you
define, will be threaded onto the PDB coordinates in the best possible way;

♦

Ca-atom PDB structures will be handled properly if all backbone torsion angles are
unfixed;

♦

the resulting ICM-object will be strained and will need further relaxation.♦

full regularization and refinement
uses minimize tether to create the starting conformation;♦
employs a multi-step energy minimization (annealing) of the structure to relief energy
strain;

♦

these are the best objects that can create in ICM for further simulations.♦
(see macro regul for details).
Examples:

 read pdb "1a28.a/" # reading just the first molecule
 convertObject yes yes no no # the best way to prepare for docking
 # convert + optimizes polar H, His and Pro

 read pdb "1crn" # X-ray object, no hydrogens, no energy parameters
 convert # a_1crn_icm ICM-object will be created
 convert a_1. "new" # a_new. ICM-object will be created
 convert a_1. exact # keep modified residues as is

 read mol2 s_icmhome+"ex_mol2"
 set object a_catjuc.
 build hydrogen
 set type mmff
 set charge mmff
 convert

168 convert

Creating a multi-part molecule in which parts are separately
controlled.

If you want to create a local "epitope" of a protein with chain fragments around a particular area, it
can be done with the

convert rs_fragments

command. This command will create a molecule divided into fragments and each fragment will
start from virtual atoms vt1 and vt2 and will be controlled with 6 virtual variables. The first vt1
of the second, third etc. fragments will be connected to the first real atom of the first fragment.
Example:

read pdb "1crn"
convert a_/4:10,12,27:33,41:45
Nof(a_m//vt1) # the number of pieces
show v_/P1/V # the pos. variables of the 1st part
show v_/P2/V # the pos. variables of the 2st part
display ribbon
color ribbon a_/P3 # showing the 3rd part

This operation is useful to create a local patch object for docking of global optimization.

Converting a chemical compound from a mol/sdf or mol2 files.

To convert a chemical from GUI menus, follow these steps:
make sure that bond types and formal charges are correct♦
select the MolMechanics.ICM-Convert.Chemical menu item, check the
parameters and press OK. Normally to convert from 2D to 3D you need to optimize the
ligand. ICM will perform a multiple start global optimization using the MMFF94 force
field (internally it runs the convert2Dto3D macro). If you want to preserve the
geometry, select the keepGeometry option.

♦

Command line conversion To perform the same conversion in a batch run the
convert2Dto3D macro, or, to make a conversion without full optimization from a command
line or script, issue the following commands:

assuming that bond types and formal charges are correct
build hydrogen
set type mmff
set charge mmff
randomize a_//!vt* 0.01 # sometimes it helps to avoid singularities
convert
set v_//T3 180. # making flat peptide bonds
fix v_//T3 # optional

Example of geometry optimization:

read mol input = String(Chemical("C(C(O)=O)N1C(C(=Cc2ccc(c3ccccc3[Cl])o2)SC1=S)=O"))
convert2Dto3D a_ yes yes yes yes
list convert2Dto3D

Converting a chemical compound and rerooting the tree at the
same time

convert as_rootAtom [auto]
if an atom selection is provided instead of the object selection, the tree will be rerooted to the
selected atom. The converted molecule will have the as_rootAtom located at the root of molecular
tree so that it is convenient to modify another molecule with the converted molecule.

auto option behaves as in normal convert command. It preserves selection and graphics and
preforms in-place conversion.

If you need to reroot an ICM object, do the following:

strip it to a non-ICM object: e.g. strip virtual♦
re-root and convert, e.g. convert a_//hb1 .♦

convert 169

Example:

build smiles "C(=CC=C(C1)C(=O)O)C=1"
display wire
wireStyle = "tree"
strip a_ virtual
convert a_//h31 auto # converts from a new root

copy

copies stuff which CANNOT be copied by direct assignment such as: a=b

copy os [s_newObjectName]
[delete|display|graphic|selection|stack|strip|tether]

creates a copy of os_ with the specified name. Default source object is the current object. The
default name is "copy" (object a_copy.)
Options:

delete forces the command to overwrite the object with the same name if there is a
name conflict.

♦

display or graphic copy the display attributes of the parent♦
selection copies named selections defined on the parent object into the copy♦
stack copies internal stack of the object (see store-object-stack) (the stored stack is not
copied by default)

♦

strip applies the strip operation to the copied object. The stripped object has a PDB
type and is much smaller in memory.

♦

tether applies tethers from the source object to the atoms of the copy-object. For
further refinement see the refineModel macro.

♦

Examples:

 read pdb "1crn"
 copy a_ # creates a_copy.
 copy a_1. "aaa" # creates a_aaa.

 read object s_icmhome+"crn" # read ICM object
 copy a_ strip delete tether # create a_copy. and tether to it

crypt

crypt key= s_password { s_fileName | string= s_string }
encrypts the file s_fileName or string s_string in place (the size of the encrypted file/string is
exactly the same), adds extension .e to the file name. If string is encrypted, its name is not
changed. Apply the operation again to restore the file or string. You may encrypt both text and
binary files. Note that this command has nothing to do with the unix crypt utility. ICM uses
different algorithm.
Examples:

crypt key="HeyMan" "_secretScript" # encrypt and create *.e file
crypt key="HeyMan" "_secretScript.e" # decrypt it

ss="Secret rumour: Div(Rot(F))=0 !"
crypt key="fomka" string = ss # encrypt
show ss
crypt key="fomka" string = ss # decrypt
show ss

Date data-type

A basic ICM class for arrays of date objects

170 copy

See also: Date.

delete ICM shell objects

delete shell objects or their parts.
delete ICM-shell object

delete [alias] [alignment] [factor] [grob] [iarray] [integer] [logical
] [macro] [map] [matrix] [profile] [rarray] [sarray] [sequence] [string
] { name1 | s_namePattern1 } name2 ...

delete all # to delete all shell objects not marked with a no delete flag

ICM-shell objects have unique names; to delete some of them just type
delete [mute] { icm-shell-objectName1 | s_namePattern1 } icm-shell-objectName2 ...
You may use name patterns with wildcards (see pattern matching) and add explicit
specification of the ICM-shell object type, if you want the search to match only the objects of
particular type. If the ICM-shell object type is not specified, all the shell-variables will be
considered.
Option mute will temporarily switch off the l_confirm flag.
delete class

delete string className

delete string command | html

to delete icm-command files or html-documents loaded into ICM

delete rarray view

to delete all the views (returned by the View() function)

Examples:

 delete aaa # delete ICM-shell object aaa
 delete a b c # delete ICM-shell objects a, b and c
 delete "*" # delete ALL ICM-shell objects added by user
 delete "mc?a*" mute # delete ICM-shell objects matching the pattern
 delete rarrays # delete ALL real array
 delete objects # delete ALL molecular objects, same as delete a_*.
 delete rarray "a*" # delete real arrays starting with 'a'

Deleting array elements To delete a selection of array elements specified as an index expression
or an integer array of indexes, use the expression from the following example:

 a={1 2 3 4 5 6} # we want to delete elements from it
 a=a[2:4] # retain only elements 2:4
 a={1 2 3 4 5 6}
 a=a[{2,3}//{5,6}] # retain only 4 elements elements
 a=Count(100)
 a=a[Count(1,10)//Count(21,30)] # retain ranges 1:10 and 21 to 30

Deleting table elements table rows can be deleted directly with the delete command, e.g.

 delete t.A>1
 delete t[{1 3 5}]

delete alias

delete alias
see alias delete alias_name . Example:

alias ls list
alias delete ls

Date data-type 171

Delete from database

delete molcart table s_dbtable [connection_options]

Deletes table from Molcart database with all index tables, related indexes and metadata.
Database connection may be specified by connection_options

Delete plots from the table

delete plot table [name=s_handle]

This command deletes from the table all plots or only the plots with the specified name (see make
plot).

ICM table plots are stored in the table header as an sarray T.plot, so 'delete plot T' is identical to
'delete T.plot'

delete selection variable

delete as_selectionName
or
delete vs_selectionName
delete named variable with atom or v_ selections. The number of named selections is limited to
about 10 in each category, therefore you may need to delete them from time to time.
Important: keep in mind that deleting the named selection is not the same as deleting actual
objects, molecules or atoms selected by them. To delete atoms selected by a named variable in an
non-ICM object, add keyword atom (see delete atom nameSelection)
Examples:

 build string "ASFGD" # build a molecule
 vsel = v_//phi,psi # this is a vselection
 delete vsel

 asel = a_//c*,n* # this an aselection (atom selection)
 delete asel # delete variable asel, do not touch the atoms
 delete atom asel # delete atoms in a non-ICM object

Delete array elements

delete variable array {i_elementNumber|I_elementNumbers}

delete one or more elements from any array. If the array is a column in a table T, use the delete
T[i] command which can delete both a single row, e.g. delete t[2], or a row selection.

Examples:

a={1 2 3}
b={1. 2. 3.}
c={"a" "b" "c"}
delete variable a 2 # deletes the 2nd element of the array
show a
 {1 3}
delete variable b 2
delete variable c 2
#
a = Count(100)
delete variable a Count(50)*2 # deletes even numbers

delete variable pairdistArray I_pos

Removes elements at positions I_pos from the array

172 delete ICM shell objects

delete atom

delete as_atoms

delete atoms as_namedSelection
delete selected atoms in a non-ICM object. The selection here must be a constant atom selection,
rather than a named selection (e.g. you can say delete a_/1:10/* but NOT aaa =
a_/1:10/* , delete aaa).
To delete a named variable, use delete atom name Example:

 read pdb "1crn"
 delete a_/1:10/*

 aaa = a_/18:20
 delete atom aaa

See also: build atom , delete hydrogen

delete directory

delete directory s_Directory
delete directory. Example:

delete directory "/home/doe/temp/"

See also:

command comment unix
equivalent

delete system s_f1 delete a single file rm file1
copy-systems_f1 s_f2 copy a single file cp file1 file2
rename system s_f1 s_newname rename/move a single file mv file1 file2
set directory s_dirname change directory (cd) cd dirname
make directory s_dirname make a directory mkdir
Path (directory) returns the path to the current directory pwd
Sarray (s_filename_filter
directory [all])

returns the file list array, all goes to
subdirectories

ls -1 [-R]
namepattern

delete file

delete system s_fileName s_fileName ...

delete external file.

Example:

delete system "/tmp/aaa"

See also other internal icm equivalents of the system commands that allow to avoid new threads.

command comment unix
equivalent

copy-systems_f1 s_f2 copy a single file cp file1 file2
rename system s_f1 s_newname rename/move a single file mv file1 file2
make directory s_dirname make a directory mkdir
set directory s_dirname change directory (cd) cd dirname
delete directory s_dirname delete an empty a directory rmdir
Path (directory) returns the path to the current directory pwd
Sarray (s_filename_filter
directory [all])

returns the file list array, all goes to
subdirectories

ls -1 [-R]
namepattern

delete ICM shell objects 173

delete history lines

delete session
deletes all previous history lines. Example:

call _macro
delete session

delete hydrogen

delete hydrogen as

delete hydrogen chem [all]
delete selected hydrogen atoms in a non-ICM object or a chemical array. See also build
hydrogen. To delete hydrogens in an ICM object, strip it first.

When the hydrogens are deleted in a chemical array, the default is to preserve the chiral
hydrogens in fused rings (the regular chiral hydrogens will still be deleted). To delete all
hydrogens use option all . In the latter case when the hydrogen carrying the stereo bond is
deleted for all heavy atoms including fused rings and the stereo bond will be reassigned to one of
the heavy atom neighbors.

Example:

build string "ASD"
strip # makes a non-ICM object
delete hydrogen a_/2,3/h*
#
group table t Chemical("[C@@](C)(N)[H])O") "mol"
delete hydrogen t.mol all # all hydrogens gone

delete object

delete { object | os }
delete molecular object. Make sure that you specify an object selection (a_1crn. is correct,
a_1crn.* or a_1crn.//* is INCORRECT.) To delete an object from a selection variable (
as_out,as2_out or as_graph, or any use defined aselection variable), use delete
atom as_namedSelection (e.g. delete atom as_graph) or specify the selection level
explicitly.
Examples:

 delete object # delete ALL molecular objects
 delete a_*. # delete ALL molecular objects
 delete a_2,4. # delete objects number 2 and 4
 delete a_2a*. # delete objects with names starting from 2a

 read pdb "1crn" # load crambin
 convert # create the second object named 1crn_icm
 # from the pdb object
 delete a_1. # delete the 1st pdb-object
 delete Object(as_graph) # graphical selection

delete molecule

delete [molecule] ms
delete separate molecules from molecular objects. The integer reference number(s) of molecule(s)
which can be shown by the show molecule command and used in molecule selections are
redefined after deleting or moving molecules from or in the ICM-tree, respectively.
To delete a molecule from a selection variable (as_out,as2_out or as_graph, or any use defined
aselection variable), use delete atoms as_namedSelection (e.g. delete atom
as_graph) for non-ICM objects, or use the Mol function to specify the selection level explicitly
(e.g. Mol(as_graph)).
Examples:

 read pdb "2ins" # load insulin with water molecules
 delete a_2ins.w* # delete water molecules
 delete atoms as_graph # deletes selected non-ICM atoms/molecules

174 delete ICM shell objects

 delete Mol(as_graph) # deletes selected non-ICM atoms/molecules

delete bond

delete bond as_singleAtom1 as_singleAtom2
delete a covalent bond between two selected atoms. This command is used to correct erroneous
connectivity guessed by the read pdb command. It is particularly important when you are going
to create a new ICM-residue using the write library command and the entry to it in the
icm.res or your own residue file (it has the same format). In interactive graphics mode you may
type delete bond and then click two atoms with the CTRL button pressed.
Examples:

 read pdb "newmol" # automatic bond determination is not perfect
 delete bond a_/3/cg1 a_/5/ce2 # disconnect two carbon atoms

See also: make bond and make bond atom_chain .

delete boundary

delete boundary
an auxiliary command to free additional memory allocated by the make boundary command.

delete conf

delete conf i_stackConfNumber [os_obj]

delete conf i_confNumberFrom i_confNumberTo [os_obj]

delete conf I_stackConfNumbers [os_obj]
delete a specified conformation from the stack or a series of conformations starting from
i_stackConfNumber to i_stackConfNumberTo . An integer array of indices can also be provided.

if the os_obj argument is provided the changes above will be applied to the local stack in the
object.

delete drestraint

delete drestraint [as_1 [as_2]]
delete distance restraints formed between specified atom selections as_1 and as_2. If no selection
is specified all distance restraints are deleted
Examples:

 delete drestraint a_mol1 a_mol2 # intermolecular restraints

delete label

delete label [i_StringLabelNumber]
delete graphics string label (text in the graphics window). These strings have no unique
identification names, they are just numbered. Numbers are compressed as you delete some labels
from the middle of the list.
Examples:

 delete label # deletes all labels
 delete label 1 # delete the first displayed label

See also:

show label to find out the label number and
display label to create and display a string label.

delete ICM shell objects 175

delete labels from 2D chemical spreadsheets

delete label chemarray [all] [index=I_]

deletes atom annotation in 2D chemical spreadsheet. Without the all option the command will
only remove labels from the selected atoms, otherwise all labels will be removed. The selection
can be done in the GUI and it appears as a green halo around select atoms.

Example:

create annotated chem table
add column t Chemical({"CCCCN","CCCNCCC","CC(=O)O","C(=O)O"})
add column t Predict(t.mol "MolpKaBase") name="pkab"
add column t Predict(t.mol "MolpKaAcid") name="pkaa"
set label t.mol t.pkab window = {0.,14.}
set label t.mol t.pkaa window = {0.,14.}
now delete it
delete label t.mol all

See also: set label chemical

delete link

delete link ms

delete links to sequences and alignments for selected molecules

delete link variable

delete all groups of linked variables (e.g. unlink the variables), see also link variables .

delete map

 *delete { *map | s_mapName } delete s_mapName or all maps.

delete sequence

delete sequence [seq_1 seq_2 ..]
delete sequence { selection | compress | protein | peptide | nucleotide |
unknown | swiss }

selection : delete the sequences selected through GUI.♦
compress : delete the sequences not included in the alignments, i.e. freely floating
sequence not included in any alignments, (compare with the compress option of
delete)

♦

protein or peptide will delete only amino-acid sequences,♦
nucleotide will delete only DNA or RNA sequences,♦
unknown : delete sequences with more than 20% of 'X' or 'x' residues. Note that this
option changed its meaning. Previously it was same as compress.

♦

delete sequence n_seq_at_the_end_of_seq_list
delete sequence [i_minLength i_maxLength] # delete OUTSIDE range.

no arguments: delete all ICM-sequences♦
one integer argument: delete last n sequences from the sequence list♦
two integer argument: delete sequences shorter than i_minLength or longer i_maxLength♦

Deleting some sequences from an alignment

delete alignmentName only selection

delete alignmentName only seq1 seq2 ...

To delete sequences selected via the graphics user interface from an alignment without deleting
them from the shell. Example

 delete sh3 only Fyn

176 delete ICM shell objects

 delete sh3 only selection

delete site

delete site seq [{s_Site|i_number|I_numbers|pattern=s}]

delete site ms1 [{s_Site|i_number|I_numbers|pattern=s}]

delete site rs
delete the sites of the selected molecules. The sites can be specified by their name, or number,
or residue selection. All sites are deleted by default.
Example:

 nice "1as6" # has 3 sites, one in each molecule.
 delete site a_1.1 {1}
 delete sites # delete all of them

See also: site

delete sstructure

delete sstructure seq_1 seq_2 .. delete sstructure select
delete the assigned secondary structure to prepare the sequence for the secondary structure
prediction (see the Sstructure function).
The selection option allows one to delete secondary structure only for the sequences selected
through GUI.
delete site in alignment

delete site ali [i_number] [I_box]

deletes annotation in the alignment by i_number or inside the I_box.

See also: set site alignment

delete disulfide bond

delete disulfide bond [all] [{ rs_Cys1 rs_Cys2 | as_atomSg1 as_atomSg2 }]
delete specified or all disulfide bridges in ICM objects.
Examples:

 # SS-bond specified by residue, or
 delete disulfide bond a_/15 a_/29
 # by atoms
 delete disulfide bond a_/15/sg a_/29/sg
 # remove all SS-bonds in the current object
 delete disulfide bond all

See also: make disulfide bond and (important!) disulfide bond.

delete peptide bond

delete peptide bond [as_N as_C]
delete specified extra peptide bonds in ICM objects (e.g. imposed to form a cyclic peptide).
Example:

 delete peptide bond a_/15/c a_/29/n

See also: make peptide bond and peptide bond.

delete ICM shell objects 177

delete stack

delete stack
delete the main stack of conformations in ICM shell. Be careful, there is a single share
stack in the shell (deleted by this command) and each ICM object can also store a compressed
stack of conformers.
See also read stack, read stack, write stack, and delete conf.

delete conformational stack inside an object

delete stack os

deletes the compressed stack inside the specified object.

See also:

store stack object♦
load stack object♦
montecarlo .. store♦
set object .. stack♦
Exist (os1 stack)♦

delete parray elements

delete parray[i_index]

delete parray[I_index_list]

deletes specified elements from a parray.

Example:

C = Chemical({"C","CC","CCC","CCCC","CCCCC"})
delete C[{1,3,5}]
delete C[1]

delete table

delete { T_table | table_expression }
delete the specified complete table or just the entries selected by the expression.
Examples:

 group table t {1 2 3} "a" {4. 5. 7.} "b"
 delete t.a == 2 # the second entry
 show t
 delete t[2] # the second entry
 show t
 delete t # the whole thing
 group table t {1 2 3} "a" {4. 5. 7.} "b"
 delete t.a > 1 # 2nd and 3rd

delete term

delete term s_terms
switch off the specified terms of the energy/penalty function.
Examples:

 delete terms "tz,sf" # do not consider tethers and solvation contributions

178 delete ICM shell objects

delete selftether

delete selftether [as]

deletes internal tethers for selected (or all atoms)

See also:

selftether♦
set selftether♦
term ts♦
convert♦
set tether♦

delete tether

delete tether [as]

delete tethers of the specified atoms (as_), if no selection is specified all tethers in the
current object are deleted.

delete tether loop [as] - this tool deletes tethers for residues flanking insertions and
deletions (one residue on each side), as well as N- and C- termini. The tool is used to help the
minimize tether command to build a more relaxed loop or end.

delete a tree from a table header array

delete variable treeParray i_treeIndex

deletes a tree object (generically considered as a parray)

Example:

make tree T
delete variable T.cluster 1

delete selected chemical fragments

delete chemical chemarray

deletes selected parts of the chemicals. See select chemical command.

display

display molecules or graphical objects
display model

display [wire|cpk|ball|stick|xstick|surface|skin|ribbon [base]] [as [as_2]] [
color] [virtual] [center [center_options]]

display [transparent] [stick|skin|ribbon [base]] [as [as_2]]
display specified graphics primitives for selected atoms or residues.

delete ICM shell objects 179

Once something is displayed and your cursor is in the graphics window you may rotate, translate,
zoom and move both clipping planes with the mouse and keystrokes.
To refer to the base part of DNA/RNA represented as ribbon , use the additional specifier called
base, which can be separately displayed and colored. E.g.

 makeDnaRna "ACTG" "mydna" yes yes "dna"
 display ribbon
 color ribbon base a_1 blue

Display surface atoms may be defined by TWO arbitrary selections (it would mean: display
surface of atoms as_1 as they are surrounded by atoms as_2) Note that the
GRAPHICS.hydrogenDisplay preference may affect the displayed atoms. To be able to
display all atoms set GRAPHICS.hydrogenDisplay to "all".
Defaults: wire representation, all atoms (corrected by the GRAPHICS.hydrogenDisplay), coloring
according to atom type.
color options
The color can be specified by a number of ways (see the color command for a more detailed
description) : Color (e.g. red), s_Color (e.g. "red"), numerical color:
 i_Color | r_Color | I_Color | R_Color [window= R_2minmax]
The window array of min and max values allows one to clamp the value you want to map to a
color to the specified range.
Other options:
center : will perform the center command on the displayed object(s).
transparent : will display the ribbons, skins or sticks as transparent objects,

read pdb "1crn"
display transparent ribbon
display skin transparent

display surface refresh : will rebuild the surfaces with new GRAPHICS.surfaceDotSize
values.
intensity= r_fraction : renders the image with fractional intensity by merging the source display
image with the background.
virtual : additionally displays the coordinate axes, virtual atoms and virtual bonds starting

180 display

from the origin. It is a good way to visualize the whole ICM molecular tree as it grows from the
origin. This option is applicable only to the ICM molecular objects.
More examples:

 build string "AFSGDH;QWRTEY" # two peptides
 display # display current object and color atoms
 # according to atom type
 display a_1 red # display the first molecule and color it red
 display skin a_/5 a_* yellow # display skin of the 5th residue
 # as surrounded by all the atoms
 display ribbon # display ribbon for all the residues

 read pdb "2drp" # a pdb file
 assign sstructure a_a/123:134,153:165 "H" # No sstructure in 2drp
 assign sstructure a_a/109:114,117:121,141:144,147:151 "E"
 display a_a ribbon red # two Zn-fingers
 display a_a/113,116,143,146/!n,c,o xstick blue # Cys residues
 display a_a/129,134,159,164/!n,c,o xstick navy # His residues
 display a_m,m2 cpk magenta # Zn-atoms
 adna1=a_b//p,c3['],c4['],c5['],o3['],o5['] # two DNA chains
 adna2=a_c//p,c3['],c4['],c5['],o3['],o5[']
 display adna1 xstick white
 display adna2 xstick aquamarine
 display adna1 adna1 surface white
 display adna2 adna2 surface aquamarine
 center
 display "Zn-finger peptides complexed with DNA" pink

display 4 chains of insulin as 4 thick worms colored from N-to C-terminus
 read pdb "2ins"
 color background blue
 assign sstructure a_/* "_" # thick worm representation
 GRAPHICS.wormRadius= 0.9
 display a_/* ribbon only
 color a_1/* Count(1 Nof(a_1/*)) ribbon
 color a_2/* Count(1 Nof(a_2/*)) ribbon
 color a_3/* Count(1 Nof(a_3/*)) ribbon
 color a_4/* Count(1 Nof(a_4/*)) ribbon

examples of DNA and RNA ribbons
 nice "4tna"
 resLabelStyle = "A"
 display residue label
 color residue label a_/?u gold # ??u also selects modified Us
 color residue label a_/?a red

display new: refresh or unclip view

display new

display restore

display restore plane

commands to mimic some of the interactive controls. These commands are primarily used in GUI
commands (see icm.gui file) and scripts/macros.
new : rebuilds some graphical representations (e.g. your as_graph has been changed in the shell
and you need to refresh the image, or you changed the orientation and want to redisplay the labels
elevated above the skin surface by resLabelShift).
restore : a softer action than new .
restore plane : moves the clipping planes beyond the displayed objects (keystroke: Ctrl-U, or
the 'Unclip' button) .

display off-screen

display off [i_Width i_Height]
Sometimes you want to generate some images in a script without opening an explicit graphics
window. The display off command opens an off-screen rendering buffer of i_Width by
i_Height size in pixels, in which all the usual display/color/undisplay/center
commands work as usual. NOTE: one cannot have both off-screen and on-screen displays in one

display 181

ICM session.
An example script (can also be performed interactively):

 display off 400 300
 nice "1est"
 rotate view Rot({0. 1. 1.} 50.)
 write image "est1"
 unix xv est1.tif
 set window 700 800 # NB: 'center all' will be applied
 write image "est2"
 unix xv est2.tif
 display a_/4/o cpk
 center a_/3,4
 write image "est3" rgb
 unix xv est3.rgb
 build string "se ala trp"
 display off 400 300
 display skin
 write image "est3" rgb delete
 unix xv est3.rgb

display origin

display the axis of the coordinate frame. The length of the arrows is defined by the axisLength
parameter. Use undisplay origin to undisplay it. E.g.

 read pdb "1crn"
 display
 display origin
 undisplay origin

Setting rotation or rocking mode

display rotate [on|off] [i_NofCycles] [pause]

The graphics view can be set so that molecule is continuously rotating or rocking, but the ICM
session remains interactive. This mode can be set with the above command. The style of
continuous interruptable movement is controlled with the GRAPHICS.rocking preference.
Specifying the number of rotation or rocking cycles i_NofCycles is useful for movie making. The
pause option forces the command to finish the requested number of rotations before proceeding
to the next commands, as opposed to just launching the rotation and proceeding with the rest of
the script.

Example:

GRAPHICS.rocking = "xY-rocking"
display rotate on 3 # three cycles

See also: write movie , GRAPHICS.rocking

display stack

display stack [os_withStoredStack] [iFrom iTo] [loop [=nCycles]]
[r_NofInterpolationFrames [simple|cartesian]] [center] [sstructure] [auto]

interpolated display of conformational stack of its parts. Aruments and options:

optional os_withStoredStack . If this argument is missing, the global stack will be used.
With the argument the built-in local object stack will be played out.

♦

optional start and end frames: iFrom iTo♦
option loop [= nCycles] : the command makes a video loop and repeats it 99999 times.
Optional nCycles redefines the number of repetitions.

♦

r_NofInterpolationFrames [simple | cartesian]] (e.g. 10.0 cartesian) :
determines the number of intermediate frames. The following interpolations are currently
provided:

simple : just wait for the specified number of frames◊
cartesian : perform linear interpolation between stack conformations◊

The default interpolation is simple .

♦

option center : centers on the displayed atoms♦

182 display

option sstructure : recomputes secondary structure for each stack conformation.♦
option auto : extracts the number of cycles (1 or endless loop) and the number of
interpolated frames (no interpolation or a fixed number of interpolated frames) from the
stack itself. The two parameters can be set with the set stack os loop|fast
[off] command. The GUI interface for the object stack display uses the auto option.

♦

Example:

 build string "ASDFW"
 montecarlo v_//x* mncalls=10 vwMethod=2 # create a conformational stack
 display xstick cpk only
the previous commands just prepare stack and display
 display stack 20. cartesian loop=4 center # repeat 4 times and stop

Another example in which the displayed trajectory is dumped into a movie file.

make the same preparations
 write movie "peptamovie" on exact
 display stack 20. cartesian loop=1 center # repeat 4 times and stop
 write movie exit

The display stack command is somewhat similar to the display trajectory
command. The display stack command has the following benefits:

it recomputes the skin if the skin is present♦
does not mess up the C-terminus in case of local deformations♦
does not save or use any external files.♦
it allows easy looping with the loop [= nCycles] option.♦

One relative disadvantage of the command is that only the cartesian interpolation is available,
while display trajectory has other types of interpolations (e.g. cosine weighting, mixed
cartesian/angular interpolation) .

See also:

display trajectory♦
write movie♦
store frame♦
stack♦

display box

display box [R_6boxCorners]
display graphics box specified by x,y,z coordinates of two opposite corners of a parallelepiped.
This box can be resized and translated interactively with the Left and Middle mouse buttons:

Resizing: Grab a corner of the box with the Left-Mouse-Button and drag it to resize
the box

♦

Translating: Grab a corner or a center of the box with the Middle-Mouse-Button and
translate

♦

See also the Box () function which returns six parameters describing the box.
Examples:

 build string "se ala his gly met" # a peptide
 display
 display box # the default box
 display box {0. 0. 0. 2. 2. 2.} # define position/size
 display box Box(a_/2) # surround the a_/2 by a box
 display box Box(a_/2 1.2) # or add 1.2A margin

display clash

display clash [as_1] [r_clashThreshold]
display all the interatomic distances for selected atoms which are shorter than the sum of van der
Waals radii multiplied by the r_clashThreshold parameter. The default value is taken from the
clashThreshold variable. Initially it is set to 0.82 but can be redefined. IMPORTANT: this
will work only for the ICM-objects. For hydrogen bonded atoms the threshold is additionally
multiplied by 0.8. Use the show energy "vw" command (and pay attention to the current
fixation) to precalculate interaction lists.
This command may show some irrelevant short contacts. calcEnergyStrain , display
gradient , etc. seem to be more informative.

display 183

See also: GRAPHICS.clashWidth , clashThreshold , show clash, undisplay and
atom energy gradient (force) analysis with: show a_//G or display a_//G.
Example:

 read object s_icmhome+"crn"
 show energy "vw"
 display a_
 display clash # all clashes, default clashThreshold=0.82
 undisplay clash
 display clash a_/11 0.95 # distances < (R1+R2)*0.95
this is an alternative method which analyzes the gradient
 selectMinGrad = 100. # analyzes forces greater than 100
 display ribbon grey
 display Res(a_//G)
 display gradient a_//G
 color Res(a_//G) ribbon magenta

display drestraint

display drestraint as
displays drestraints, disulfide bonds, and peptide bonds imposed on
selected atoms.
See also: read drestraint, set drestraint, make disulfide bond, make
peptide bond, make drestraint.
Example:

 build string "se ala his trp ala gly gly"
 display
 set drestraint a_/1/hn a_def.a1/6/o 2
 show energy "cn"
 display drestraint
 minimize "vw,14,to,cn"

display gradient

display gradient as
display vectors of energy derivative with respect to atom positions or selected atoms as_ .
Important: the gradient must be pre-calculated by using one of the following commands: show
energy or minimize . The values of gradient components (lengths of vectors for each atom)
can be shown by show gradient as_. When a gradient vector is displayed, two
transformations are performed: it is scaled and colored to represent the range of values in the most
convenient and natural way while still being able to deal with a wide range of gradient values from
negligible to 10 to the thirtieth power, as may be the case for a strong van der Waals clash. When
all gradient vectors are under 20 kcal/mole*A they will be colored by the "cold" colors
(blue...green...yellow) and will be assigned a length less than 2 Angstroms. If you see a red and
long vector you may have a problem. Check it by zooming in and using show gradient as_.
You can also select only atoms with gradient greater than the threshold value selectMinGrad
by typing a_//G and display only specified strained atoms. It helps to get rid of little blue arrows
for unstrained atoms.
Examples:

 build string "ala his trp glu leu"
 randomize v_//phi,psi
 show energy
 selectMinGrad= 20.
 display a_
 display gradient a_//G

display grob

display grob [solid][smooth][dot][reverse] [transparent]
display g_Name1 g_Name2 ... options
display grob selection ... options
display all, specified, or graphically selected graphics object(s) . They are referred to as
grob in the ICM-shell and as "3D meshes" in the GUI interface. The display grobs
command will display all existing graphics objects. Options:

dot will show only dot-vertices of the object.♦

184 display

reverse to invert lighting; this option will change directions of the grob surface
normals (will turn the grob inside-out)

♦

smooth enforces the Gouraud shading method to smooth the solid surface.♦
solid allows solid surface representation of the object and requires that the original
object has information about triangles forming the solid surface.

♦

transparent makes solid grob transparent♦
One can also color and undisplay graphics objects, as well as connect to them.
Examples:

 read matrix s_icmhome+"def.mat" # 2D sin(r^2)/r^2 function of a grid
 make grob solid def # convert matrix into a graphics object g_def
 display g_def smooth # a hat of the 22st century
 rotate view Rot({1. 0. 0.}, 45.) #
 display g_def reverse # shine light from inside the head
 display grob smooth transparent # like Lenin in Mausoleum

set font of a 3D label

display g_label [bold] [italic] [underline] i_Size [font=s_FontName]
[rgb=R_3rgb|"#xxyyzz"]

displays g_label text (technically it is a grob with a single point and associated text) in a
particular font.

Example:

read pdb "1crn"
display a_
label3d = Grob("label",Mean(Xyz(a_/3,4)), "3D label for res 3,4")
set font label3d times 36 rgb="#00ffdd"
display label3d
select edit label3d # makes it movable, press Esc to get rid of the cursor

display hbond

display hbond [as] [r_maxHbondDistance] [only]
Only hydrogen bonds of the current object may be displayed. Before calling this
command, you should use any of the following commands: show hbond, show energy,
minimize to calculate the list of hydrogen bonds. The real argument r_maxHbondDistance
defines an upper bound of the distance between a hydrogen and a potential hydrogen acceptor to
place the pair to the hydrogen bond list. (Default value of r_maxHbondDistance parameter is 2.5
A.) The list is recalculated for each new loaded molecular object. Hydrogen bonds on display are
colored according to their hydrogen-acceptor distances. The option only allows one to display
hydrogen bonds without corresponding molecular object. Longer and shorter H-X distances in the
hydrogen bond are color-coded, from red to blue, respectively.
For ICM object the hydrogen bonds are calculated much faster because the atom pairs are
precalculated. However, the displayed hydrogen bonds will then depend on how the model was
fixed. No hydrogen bonds will be shown inside rigid bodies.

The color or hydrogen bonds will be calculated according to a calculation involving the effective
lone pair density (see hbond color).

See also: undisplay hbonds, show hbonds.

Strength and color of a hydrogen bond

The hydrogen bonds created or displayed with the make hbond or display hbond
commands are colored according to the estimated 'strength' of this hydrogen bond. This is just an
estimate since the energy of hydrogen bond is not easily decoupled from the van der Waals and
electrostatic contributions between the hbonded atoms and their immediate environment. In ICM
the strength is estimated using the following procedure described in J Med Chem. 2003 Jul
3;46(14):3045-59.

display 185

For a hydrogen bond acceptor atom A(i) and a hydrogen atom H(j) located at rj, the hydrogen
bonding interaction was estimated

Fang(phi)Fdist
 (rLPi -rj)

, where phi is an angle formed by the hydrogen bond acceptor atom, hydrogen, and the hydrogen
bond donor, and rLPi is the radius vector of the center of the lone electron pair (LP) closest to the
hydrogen. The angular function used was defined as Fang = 1 - cos(k*phi) . Parameter k is
accessible as GRAPHICS.hbondAngleSharpness in the shell. Distance function Fdist (rLPi-rj)was constant (1.0) within LHB/2 from the lone pair center and dropped as

exp(-(((rLPi - rj)/LHB)
 - 0.5)2) .

beyond that distance, where LHB is the characteristic range of hydrogen bonding interaction (value
of L=1.6 ï¿½was used). Lone pair centers were placed at 1 ï¿½from the hydrogen bond acceptor
atom, assuming symmetrical planar trigonal configuration for sp2 atoms and tetrahedral
configuration for sp3 atoms. The resulting functional dependence reflects (at least qualitatively)
the physical nature and observed statistics of the hydrogen bond interactions. The interaction is
maximized when the hydrogen atom is pointing directly to the acceptor atom along a lone pair
axis and drops quickly as the hydrogen is moved farther away. The strength declines more
gradually as the hydrogen moves out of the LP axis or, as hydrogen bond donor, hydrogen atom,
or hydrogen bond acceptor, move out of alignment.

See also: GRAPHICS.hbondMinStrength

display label

display [{ atom | residue }] label [selection]
display variable label v_selection
a graphics label with atom name, residue name, variable name for all or selected atoms, residues
or variables respectively. The text of this label is not user-defined, although you can control it in
two different ways. First, residue label style can be set using either Ctrl-L in the graphics
window or resLabelStyle preference , and variable label style either by Ctrl-V, or setting
varLabelStyle preference. Second, the ICM-shell string variable s_labelHeader defines
a prefix string for all labels. For example, if you display CPK atoms you may move the label to the
right from the atom center by s_labelHeader=" " .
The _aliases file has convenient aliases (e.g. ds for display, unds for undisplay, re , for
residue, va for variable) for those of us who like typing commands. In this case you may just type
ds va la to display variable labels, etc.
Examples:

 build string "FAHSGDH"
 display a_
 display residue label #
 undisplay label
 display residue label a_/his
 display variable label v_//phi,psi
 display variable label v_//* & as_graph
 display atom label a_/1:3/*
 undisplay label
or with aliases:
 ds re la a_/1,3
 unds la
 .. etc.

display map

display { map | map_name } [I_colorTransferFunction] [R_2RangeOfMapValues]
displays a real function defined on a three-dimensional grid (i.e., an electron density map).
Optional iarray argument defines a color transfer function according to deviation from the
mean.
If you provide an explicit range of map values (R_2RangeOfMapValues), the map values will be
clamped into this range, divided into Nof(I_colorTransferFunction) subranges, and colored
according to the values of I_colorTransferFunction :

0 - transparent/invisible♦
1 - blue♦
maxNumer - red♦

186 display

To undisplay the bounding box reset the GRAPHICS.displayMapBox parameter.
See also the color map command.
Example:

 build string "se his arg"
 make map potential "el" Box(a_/1,2/* , 3.)
 display a_
 display map m_el {1 2 0 0 0 0 3 4 5 6} {-20.,100.}
 center
 make grob m_el 2. name="g_1"
 make grob -m_el 1. name= "g_2"
 display g_1 red
 display g_2 blue

In the display map m_el {0 1 2 3 4 0} {-2.,2.} example, the values will be
clamped into the -2.,2. range. The range will be divided into 6 sub-ranges: -infnty:-2.,
-2.:-1, -1:0, 0:1, 1:2, 2:+infnty . The first and the last ranges will be invisible
(color 0). The four ranges in the middle will be colored from blue to red.

See also related commands: read map, write map, delete map, show map, set map,
make (1), make (2) and file format icm.map .

display trajectory : simulation trajectory

display trajectory [s_TrjFileName] [i_From [i_To]] [r_Smooth1 [r_Smooth2]] [as_1] [
center [as_2]] [sstructure] [imageOptions]
lets you play, stop and reverse a Monte Carlo simulation trajectory as well as write a series of
images for future assembly of those images into movies.

Arguments and options:

Integers i_From and i_To specify the frame range.♦
Real values r_Smooth1 and r_Smooth2 determine minimum and maximum smoothing
parameters (i.e. number of additional frames, inserted if conformation change is too
dramatic). For example: 100. 700.

♦

Specifying atom selection as_1 defines a certain fragment on to the initial
conformation, of which subsequent conformations are superimposed.

♦

The image saving options include: image [=s_framePath] [rgb|targa|png|gif]
Option image allows one to automatically save a series of image files in the
s_framePath argument of the image= option or in the default s_tempDir directory.

♦

center option with selection as_2 determines a fragment for graphics window
centering (all, if center without as_2).

♦

To obtain the trajectory info use
read trajectory s_TrjFileName
When playing a trajectory, you can use ICM interrupt (Ctrl-\) to stop, and then toggle
stepwise frame playing, reverse, or quit playing. The default is to play a whole trajectory without
smoothing, superimposition or centering. Example:

 build string "ala ser ala thr ala glu ala"
 mncallsMC=10000 #
 montecarlo trajectory
 read trajectory "def"
 ds ribbon, wire
 ds trajectory center sstructure 10.

Notes:

do not forget to start ICM with the -24 flag to double the image quality.♦
set IMAGE.generateAlpha to no if you want to keep the background colored and
not transparent.

♦

Allowed image formats are: rgb, targa, png, gif . The file extensions will correspond to
the image file format. The image file names consist of the default path and name, appended with
the frame number. Example:

 display trajectory image="/tmp/f"
 /tmp/f_1.png
 /tmp/f_2.png

display 187

 ...
 s_tempDir = "/home/jack/X"
 display trajectory image rgb
 /home/jack/X_1.rgb
 /home/jack/X_2.rgb
 ...

All the other image preferences may be predefined by the IMAGE table.
Option sstructure will dynamically reassign secondary structure while going through
conformations of each frames. This option is very useful if you perform peptide/protein simulation
and want to see if secondary structure elements are forming transiently.
See also: trajectory file.

display ribbon

display ribbon rs color

displays protein or DNA backbones in ribbon
presentation.

See also:
ribbon♦
undisplay♦
ribbonStyle♦
GRAPHICS.ribbonCylinderRadius♦

display site

display site rs color
display site information. Switch between different types of the site information with the
SITE.labelStyle preference. By default only non-zero priority sites are displayed.

display skin or dotted surface

display { skin | surface } as_1 as_2

display skin as_1 molecule
display analytical molecular surface, also referred to as skin, or solvent accessible surface
area . Each display skin command will delete the previously displayed skin in the current
plane. To display several different skins, use the set plane command to change the current
graphics plane before you issue the display skin command. You can also convert the skin into a
grob with the make grob skin command. You can co-display many grobs on the same
plane, as well as make the grob transparent. This grob can be further split into individual shells
with the split command.

Options:

molecule : (for skin) considers each molecule in isolation♦
See also: How to display and characterize protein cavities.
Example:

 build string "se ala his glu" # test tripeptide
 display # the wire model
 display skin a_/1 a_/1 # skin around the 1st residue or just press <F1>
 display skin a_1 molecule # equivalent to a_1 a_1
 set plane move on 2 # key with your cursor in the graphics window

188 display

 display skin a_/3 a_/3 # skin around the 3st residue
 # now you can toggle planes with F2 and F1
 display surface # solvent-accessible surface

display slide

display slide [reverse | i_slide] [s_slideProperties] [view] [smooth] [add]]

display the next slide or slide number i_slide . Options:

which slide to show? if you have just said: display slide the next slide will be
shown, display slide reverse will show the previous one. A specific slide
number i_slide can also be shown (ICM also understands index=3).

♦

view : using only the viewpoint/clipping planes from a slide (see also set view).♦
smooth : or smooth= i_transition_time_in_msec will make a smooth view transition
from the current state to the slide view. (e.g. display slide smooth or display
slide 5 smooth=1000

♦

add : adding representations to the existing display, rather than overwriting the slide
(like appending a new graphical layer)

♦

You can individuall control which sections of the slide information to use in display slide
using s_slideProperties . The syntax of this string is the following:
"sect1on;sect2on;..;-sect3off;sect4off; .." The section names are separated
by a semicolon, and plus and minus are used to switch things on and off with respect to the default
state. The allowed sections include:

Section Name Default Description

"layout" - if +, sets the layout of ICM windows and panels (if off, preserves
the current layout)

"activewindows" + if +, sets the saved active window or panel in ICM gui
"smooth" - if +, makes smooth animated view transitions between slides

"add" - if +, adds the next slide as a layer to the previous, rather than
overwrites it

"gf" + graphical representations (CPK, xstick, skin etc.)
"color" + colors of representations
"labeloffs" + restoring slide-specific displacements of residue labels
"viewpoint" + the view point, zoom, and clipping planes
"graphopt" + the state and parameters of rotation, rocking, etc.

"mol" + if - , do not restore any property of molecular objects in main
graphics window

"grob" + if - , do not restore any property of grobs in main graphics
window

"map" + if - , do not restore any property of maps in main graphics
window

"all" - switches all sections, on (+) or off (-)
Examples:

 display slide 4 "-all;+gf;+color"
 display slide 4 "-viewpoint"
 display slide 4 "+smooth" # enforce smooth view transitions

display slide show [index=i_start] [reverse]

the keyword show switches the program into the slideshow mode and makes smooth transition
the default. Other options are the same as above.

Examples :

icm -g&
read binary s_icmhome+"example_slideSGC.icb"
display slide
display slide # the next slide
display slide smooth # make a 500msec-transition
display slide 4 # 5th slide
display slide 2 view # enforce viewpoint from slide 7

display 189

display slide add 2 # display additional representations from slide 3

See also: add slide , set view .

display string

display string s_StringText [P_image] [size=r_imageScale] [color_spec] [font_spec] [
r_XscreenPosition r_YscreenPosition]

display a text string in the graphics window. Relative X and Y
screen coordinates (ranging from -1. to 1.) of the string
beginning may be specified to display the string in a given
location. Defaults are x = -0.9, y = 0.9, i.e. upper left corner of
the screen.

The string can be dragged later to any location by the middle mouse button.

The command supports various formats for specifying the label color
color_spec and font parameters to characterize the label font font_spec.

Two fonts are at your disposal: the default font (usually times) and the auxiliary font (usually
symbol). Both fonts can be redefined by the set font command. You can also switch to the
auxiliary font and back inside the string by backslash-A (\A). (.e.g "Red: \Aa\A-helix"). You can
also list and delete your string labels by the list label and delete label commands.
Examples:

display string "Crambin" # a simple string

display string "Act.site of \Ab\A-lactamase" yellow # Greek beta letter

build string "ala"
display string Name(a_1.) red 28, 0. 0.9 # first object name
 # in the middle
 # (font size=28)

display tethers

display tethers [as] [r_minDeviation]
displays tethers assigned to the selected atoms as_ with deviation larger than r_minDeviation.
Tethers can be imposed between atoms of an ICM-object and atoms belonging to another object,
which is static and may be a non-ICM-object. (0. by default).

display volume

display volume

activates fog from the command line. See also fogStart . Accordingly, the undisplay
volume switches the effect off.

display window

display window [i_xLeft i_yDown i_xSize i_ySize]

undisplay window

190 display

displays/undisplays the graphics window. When ICM is started without GUI, it is allowed to
specify the window size and position.

See also: set window

display window=s_windowList

undisplay window=s_windowList

Displays/undisplays GUI windows and toolbars. s_windowList should be a comma-separated list
with ICM panel and toolbar names.

"opengl" # undisplays the graphics window♦
"all" # undisplays all except graphics window♦
"alignments"♦
"htmls"♦
"masterview" # shows/hides workspace panel♦
"moledit" # shows/hides molecular editor window♦
"plotdialog" # shows plot dialog for the current table (in modal mode)♦
"searchwindow" # show/hides chemical search space window. Chemical pattern can
be provided optionally as an extra argument

♦

"columnfilter" # launches column filter dialog for specified table column♦
"tablesearch" # launches table "Find and Replace" for the active table. Search
string can be provided optionally as an extra argument

♦

"processes" # shows/hides background job list window♦
"prop" # 'Display Panel' with multiple tabs (display/light,...)♦
"terminal"♦
"tables"♦

Also the tool panels:
"moveTools"♦
"clipTools"♦
"miscTools"♦
"viewTools"♦
"planeTools"♦
"fileTools"♦
"levelTools"♦
"tableTools"♦

You can also display/undisplay individual tabs from the 'Display Panel'. To do that you need to
append a tab name to the "prop:".

Example:

undisplay window="prop:light" # hide 'light' tab from the panel

Note: This command does not affect the content of the main working area (the center)

Example:

read binary s_icmhome + "example_search.icb"
display a_
undisplay window="tables" # hides tables
undisplay window="all" # leaves only 3D graphics window
display window="moledit" Chemical("CCO") # popups Molecular Editor with compound
display window="searchwindow" Chemical("CC[O;D1]") # popups Chemical Search Space with compound

display window=s_window center

sets the specified s_window to the center. Windows which may occupy the central position are:

"opengl"♦
"alignments"♦
"htmls"♦
"tables"♦

Example:

read binary s_icmhome + "example_search.icb"
display a_
display window="opengl" center # sets graphics window to the center

display 191

display window=s_layoutString

Applies the window layout specified in the s_layoutString. ICM stores the layout information as a
string in a specific format. Window layout information is stored, for example, in slides.

Example:

read binary s_icmhome + "example_search.icb"
sl = Slide()
display a_
display window=String(sl gui) #changes the view back to what was before the 'display' command

See also: Slide, String slide gui

display GUI windows

display gui [off] s_window

Obsolete command. See: display window

edit

edit icmShellVariable
interactively edit the ICM-shell variable using your favorite editor defined by the s_editor
variable.
Examples:

 edit mncalls # actually it is easier to type: mncalls=333
 edit FILTER # edit a system table, do not change names of components

 group table t {1,2,3} "A" {"a","b","c"} "B" # create a table
 t #
 edit t # edit table t

elseif

elseif
is one of the ICM flow control statements, used to realize conditional statements.
See also: if, then, and endif .

endfor

endfor
is one of the ICM flow control statements, used to perform a loop in ICM-shell
calculations. See also for .

endif

endif
is one of the ICM flow control statements, used to realize conditional statements.
See also if, elseif, and then .

endmacro

A command ending a macro .
Examples:

 macro threeEssentialsOfLife # declare new macro
 # define essentials
 l_info=no
 modes={"\n\tOoops!!\n","\n\tOuch!!\n","\n\tWow!!\n"}

192 display

 # randomly pick a line
 print modes[Random(1,3)]
 endmacro
 threeEssentialsOfLife # invoke macro

Enumeration of stereoisomers

enumerate chiral chem_array [index=I_selectedChems]
[center=i_Max_Number_of_Centers] [name=s]

Generates all possible stereo isomers for each chemical compound from or from selected
chemicals (I_selectedChems). Important: this operation requires that two conditions are
satisfied:

a molecule has a stereo center (i.e. an sp3 atom with four different substituents♦
if a stereo center has a definite chirality ("up" or "down", or R, or S) stereo isomers
will not be generated. The center needs a stereo bond is marked by type "off", or
"either" to imply an uncertain chirality or a racemic mixture of two isomers.

♦

Sometimes you may want to skip compounds with number of unspecified centers greater than
certain value. In this case you should provide center = i_Max_Number_of_Centers argument to
the command.

The command will always generate at least one element for each compound. Example:

group table t {"CC(N)O","CC(C)C(C)O"} "mol"
enumerate chiral t.mol name="isomers" # creates isomers.mol

Tautomer enumeration

enumerate tautomer chem_array [keep] [filter] [index=I_index_array]
[name='T_tauto']
Generates all possible tautomers for each chemical compound from . Returns the resulting
chemical array of tautomers. The command will always generate at least one element for each
compound.

The current function only generates tautomers that preserve the atom content (does not add or
remove hydrogens). With keep option it'll also preserve the hybridization state of each atom (i.e.
does not change sp3 to sp2).

Some tautomers are formally possible but chemically do not make much sense. To avoid
generating those tautomers, Split uses the TAUTOFILTER.tab file that contains the unwanted or
chemically impossible tautomer patterns in the SMARTS format. Feel free to add more patterns to
this file. Use filter option to enable filtering by patterns.

Example file:

#>T TAUTOFILTER
#>-sm----------------comment
"*C([OH1])=[N;R0]" "peptide bond"

 p = Chemical("C(=C(NC(=N1)N)N2)(C1=O)N=C2")
 Nof(p) # 1 element
 1
 enumerate tautomer p
 show T_tauto
#>T T_tauto
#>-mol---------idx--------
 "C1=NC2=C(NC(=N)NC2=N1)O" 0
 "c1nc2=C(NC(=N)N=c2[nH]1)O" 0
 "C1=NC2=C(N=C(N)NC2=N1)O" 0
 "c1nc2c(nc(N)nc2[nH]1)O" 0
 "C1=NC2=C(NC(N)=NC2=N1)O" 0
 "c1nc2C(NC(=N)Nc2[nH]1)=O" 0
 "c1nc2C(N=C(N)Nc2[nH]1)=O" 0
 "c1nc2C(NC(N)=Nc2[nH]1)=O" 0
 "c1nc2C(=NC(=N)Nc2[nH]1)O" 0

endmacro 193

Combinatorial library enumeration

enumerate library [simple] chem_scaffold_R1R2 .. chem_R1 chem_R2 .. \ [name=
s_libTableName|output= s_fileName] [filter=expression]

Applies chemical arrays (usually a column in a chemical table) for each of replacement groups
chem_R1, chem_R2 etc. to the first element of the scaffold template array. (also known as
enumerate library

The scaffold.The scaffold structure needs to be drawn as a Markush structure, e.g.

add column scaffld Parray("[R2]C(C(=O)[R3])NC(=O)N[R1]") name="mol"

The replacement groups.Each replacement group in a chemical array (table) needs to have an
attachment point specified. In the Smiles/Smart representation used in ICM it is marked by an
asterisk (e.g. "[C*]CC"). Marking an atom as an attachment point can also be done in the
Chemical Editor (right-click on an atom and choose the Attachment Point menu item).

The output table or file.The output table will contain all combinations . If the output option is
specified the resulting library is saved to a file and the table is not created. Warning: if the number
of combination exceeds 20000 the resulting library is saved to a file automatically (to avoid
memory problems).

Option name = s_table allows one to change the default name of the output table.♦
Option output = s_file forces the file output and suppressed the table creation.♦

The output chemical table has a product column as well as the index of each R-group.

simple option toggle a special mode where instead of full enumeration it simply goes through the
input substituents and take i-th element from each. This mode requires that size of all R-group
arrays should be the same. The size of the output will be equal to the size of R-group array(s)

Dynamic filtering of the output by applying a filter expression.The filter= s_expression
option allows one to apply a filter during the library generation. The filter expression is a
double-quoted string with the following structure: "Function1 relation value & or | Function2
relation value & or | .. "

Example:

filter = "MolLogP<5. & Nof_Frags('C(O)=O')<1"

The list of functions is expanding. The current list of the functions is the following:

Function Name Description Example
MolWeight MolWeight < 650

Nof_Molecules the number of individual
molecules,including ions and salts Nof_Molecules==1

Nof_Chirals the total number of racemic and chiral
centers Nof_Chirals==0

Nof_RotB rotatable bonds
Nof_HBA hydrogen bonding acceptors
Nof_HBD hydrogen bonding donors
Nof_Atoms the total number of non-hydrogen atoms
Nof_Frags (
s_smart) counts the number of fragments Nof_Frags('[S,P](=O)=O')==1

DrugLikeness a number around 0 DrugLikeness > 0
MolLogP log P prediction
Volume 3D molecule volume prediction
MolPSA polar surface area
MoldHf heats of formation
MolLogS solubility
See also:

Predict for a detailed description of some of the functions.♦
make reaction♦

194 Combinatorial library enumeration

A short form of the enumerate library command and linking. The replacement group arrays
can be linked to the R positions of a scaffold with the link group command. In this case a
short form of the command can be used, e.g.

link group scaffold.mol 1 r1.mol 2 r2.mol 3 r3.mol
enumerate library scaffold.mol

Example:

 read binary "example_enum.icb" # contains scaffold and R1,R2,R3
 enumerate library scaffold.mol[1] name=Name("lib", unique) R1.mol,R2.mol,R3.mol
 split group scaffold.mol[1] lib.mol # if you want to split it back

The inverse operation: split the library into scaffold and replacement group arrays.A library
can be also reduced back to the scaffold and replacement groups using the split group
scaffold library command. E.g. split group scaffld.mol combilib.mol

See also: make reaction , split group , Replace chemical .

endwhile

endwhile
is one of the ICM flow control statements, used to perform a loop in ICM-shell
calculations. See also while .

exit

exit [s_message]
exit from a script file to interactive mode. Do not confuse this command with the exit option
in, say, highEnergyAction preference.
Similar to return [error s_message] from a macro .
To quit the program, use the quit command.
find

a family of commands for sequence and pattern searches, chemical matching, 3D pharmacophore
matching, and alignment optimization. For chemical matching also see chemical tables,
and the Nof chemical function.
find alignment : automated structural alignment

find ali_initial [superimpose] [r_threshold= 3. [r_retainRatio= 0.5]]
find the best structural alignment of two proteins by refining the inaccurate initial alignment
ali_initial with the goal of finding the largest possible subset of residues which have similar local
backbone fold in 3D space.
Option superimpose automatically superimposes molecules according to the found structural
alignment upon completion of the iterations. This command needs a starting alignment of 2
sequences linked to the molecules with at least one atom per residue. If Ca atoms are not found
the atoms carrying the residue label (see the set label command) are used.
Low gap penalties of 1.8 and 0.1 are recommended for the initial sequence alignment.
Algorithm : At each step aligned pairs of atoms which are further than r_threshold from each
other are disconnected so that at least r_retainRatio pairs are be retained. Then the molecules are
superimposed again and new residue pairs are tested and accepted if it leads to a lower overall
rmsd. Warning: the result strongly depends on the relevance of the starting alignment to the best
3D alignment. Sometimes 3D irrelevant sequence alignment pairs do not tend to disconnect to
allow transformation into a global 3D alignment: e.g. if only one pair of elongated helixes is
aligned in the starting alignment and it is only a small part of an optimal alignment which would
be completely different, it might not be eventually found.

See also other types of structural searches and superpositions:
find pdb: search a database of a single structure for a fragment with a given sequence
pattern and partial structural similarity (e.g. loop ends match).

♦

superimpose: performs structural superposition, the command can do it on the basis
of sequence alignment on the fly.

♦

Example:

endwhile 195

 read pdb "1nfp"
 read pdb "1brl.b/"
 rm !Mol(a_*./A)
 make sequences a_*.
 aa=Align(1brl_1_b 1nfp_a)
 ds a_1.//ca,c,n grey
 ds a_2.//ca,c,n green
 superimpose a_1.1 a_2.1 aa
 center
 find aa superimpose
 show aa

 gapExtension = 0.05
 ab=Align(1brl_1_b 1nfp_a)
 find ab 4. 0.7 superimpose
 show ab # better

See also: pairwise alignment multiple alignment

find database: sequence and pattern searches

find database [r_probabilityThreshold] options

find database exact [distance= i_nOfMutations]] options

find database pattern={ s_pattern | S_patterns } options

find database write [s_database]

find database fast [= i_speed] [output=s_file] [name=s_tabName] # blast like fast
search.
fast sequence or pattern search through a sequence database.
The default find database sequence search program performs a full gapped optimal sequence
alignment, which is a global alignment with zero-end-gap penalties (ZEGA). These alignments are
more rigorous (not heuristic) than popular BLAST of FASTA searches. The latest statistics of
structural significance of sequence alignments derived for a number of residue substitution
matrices will be applied (Abagyan and Batalov, 1997) to assess the probability that a
matching fragment shares the same 3D fold. The r_probabilityThreshold (default 0.00001 or 5.)
option defines the lowest acceptable probability of hit. You can also provide a -logP number
(e.g. 5.5) instead of a small probability (10^-5). Threshold of 10/DatabaseSize is usually a
safe threshold (no guarantees though). Practically 10-5 is a safe threshold for a SWISSPROT
search (65,000 sequences). At 10-4 you may find interesting hits, but a more serious analysis may
be required to confirm its significance.
The second version of the command with the exact keyword performs a very fast search for
identical or almost identical sequences. The distance= i_maxNofMutations parameter specifies
the allowed number of mutations.
find database pattern

The third version of the command searches for string patterns in a sequence database. The
sequence patterns can contain while cards (e.g. "A?[LIV]?\{3,5\}[!P]"). This search is very
fast.
The fourth command find database write is used to export ALL sequences from the
blast-formatted files into to an external FASTA file defined by output= string (default
s_databasePath.seq). This option is the inverse of the write index sequence command
which creates several BLAST files from a FASTA file.
The common options are as follows: [s_databasePath ("pdbseq")] [seq_1 ..] [ali_1 ..] [
output= s_outputFileNameRoot] [name= s_tableName] [unique] [delete] [protein
| nucleotide | type]

DATABASE: s_databasePath (default: "pdbseq" files in the $BLASTDB directory)
defines the path of the three files with the compressed sequence files. For compatibility
these three files (.bsq, .atb, .ahd) are the same as generated by the setdb (BLAST)
command. The available files can be vied with the list database command, by
default the "swiss" file is taken from the $BLASTDB directory. If the environment
variable $BLASTDB is set, the three files will be taken from this directory. To read
database files from any directory, specify its explicit path (e.g. "./myLocalDb" or
"/home/user/myHomeDb1") Note: when the PDB sequences are updated, the blast files
go into s_userDir + "/blastdb" , On Linux the database is at "~/.icm/blastdb/pdbseq" .
To make this directory the default blast directory, reset the s_blastdbDir to

♦

196 find

"/your_home/.icm/blastdb/". In GUI, choose File;Preferences;Directories
and modify the s_blastdbDir variable.
QUERY: seq_1 .. (list of sequences), or ali_1 .. (list of alignments), or keyword
selection determines which sequences will be searched against the database. The
default (no argument) means that all the sequences currently present in the ICM-shell
(see list sequence) will be searched. The selection can be made from the ICM
GUI.

♦

OUTPUT FILES: option output= s_projName to redefine the name of the project. The
default name of the output files is the name root of the database file. The following files
are saved

 projName_seq # query sequence(s)
 projName.seq # a sorted list of database sequences truncated to the matching fragment.
 projName.tab # the result table

♦

TABLE: option name= s_resultTableName defines the names of output table which is
created after the search. The table contains the boundaries of the hits, sequence identities
etc.

♦

option margin= i_seqMargin in the pattern search defines the length of flanking
sequences added to the matching fragment and saved in the s_projectName.seq file for
further retrieval. Specify a very large number to store complete sequences.

♦

option delete will overwrite the output files without asking, as if l_confirm=no .♦
option unique makes the program ignore hits with sequences 100% identical to the
query set (if one sequence is a fragment of another, they are is still considered 100%
identical).

♦

option protein or nucleotide limits the search to database sequences only of this
type. It is important for PDB sequence database since it contains both protein and nucleic
acid sequences.

♦

option type automatically selects protein or nucleotide based on the query
sequence type, but only if you search with a single sequence.

♦

Other important variables:
alignMinCoverage (default 0.5) a threshold for the ratio of the aligned residues to
the shorter sequence length.

♦

alignOldStatWeight (default 1.) a parameter influencing the statistical evaluation
of sequence comparison. To use run-time statistics use alignOldStatWeight=0.

♦

Up to mnSolutions hits will be retained in the final table of hits.♦
The parallel version of the program will use the number of CPUs defined by the fork
command (but not more than is available in your computer). The expected time is
inversely proportional to the number of CPUs.

♦

maxMemory is a real ICM-shell-variable defining the size of the database buffer
memory in Mb used by the command. If this size is smaller than the database, the
sequences will be loaded in chunks.

♦

The output table looks like this and contains the following fields:

#>T SR
#> NA1 NA2 MI MX LMIN LN H ID SC pP DE
1hiv_a POL_HV1H2 57 155 99 0.665 0.099 100.0 103.69 30.00 "POL PROT.."
1hiv_a POL_HV1BR 69 167 99 0.664 0.098 99.0 103.62 30.00 "POL PROT..
<i>... lines skipped ...</i>
1hiv_a POL_MLVAV 9 102 99 0.648 0.078 27.3 23.41 5.31 "PROTEASE.."
1hiv_a VPRT_MPMV 172 272 99 0.799 0.290 29.3 21.95 4.82 "PROTEASE.."
1hiv_a VPRT_SRV1 172 269 99 0.799 0.290 27.3 21.65 4.72 "PROTEASE.."
1hiv_a GPDA_RABIT 33 145 99 0.785 0.264 28.3 20.98 4.50 "GLYCEROL3P"

NA1 - the query sequence (a single command can search several query sequences)♦
NA2 - the name of the database sequence♦
MI : MX - the matching fragment boundaries in the database sequence♦
QMI : QMX - the matching fragment boundaries in the query sequence♦
LMIN - the shortest sequence length in a pair (query, database sequence)♦
LN - log-correction factor (not used in pP but you may want to use it to resort the table).♦
H - the fraction of the database sequence covered by the alignment with the query. If you
search against a database of domains this number should be close to 1 (e.g. the hit is less
significant if your query is only a part of a domain). It can be taken into account by
multiplying pP by this number.

♦

ID - percent sequence identity (number of identical residue pairs in the alignment divided
by LMIN)

♦

SC - normalized alignment score which is used to calculated the Probability. The score
depends on the residue substitution matrix and gap penalties. (see the
Score function).

♦

pP = -log10 (Probability)♦

find 197

DE - the database sequence definition♦

Examples:

 s_searchDB = s_icmhome + "/data/blast/pdbseq"
 read sequence "GTPA_HUMAN.swi"
 find database s_searchDB output="gtpa1"
 find database pattern="C?[DN]?\{4\}[FY]?C?C" s_searchDB margin = 5

 unknown1=Sequence("TTCCPSIVARSNFNVCRLPGTPEAICATYTGCIIIPGATCPGDYAN")
 find database exact unknown1 s_searchDB margin=1

find database fast : fast dictionary-based sequence search

find database fast [= i_speed] sequence s_dbFile [output=s_file] [name=s_tabName]

very fast dictionary-based sequence search algorithm. Requires a blast-formated database file.
Options:

fast= i_speed # a number from 1 (slow, rigorous) to 100 (fast and only almost identical
sequences).

♦

output= s_file # saves the output to a file.♦
Example:

read sequence swiss web "1433B_HUMAN" # read one sequence
find database fast=90 1433B_HUMAN # search pdbseq database (the default)

See also: write index sequence command that creates BLAST files from a FASTA file.

find molecule: chemical substructure search

A family of chemical substructure identification commands:

find molecule♦
find molecule sstructure [tether] ms1 ms2 [all] # maximal common
substructure, equivalent atom pairs in S_out

♦

find molecule s_Smile1 { s_Smile2 | S_Smiles2 } [atom] [bond] [simple]
Identify a complete match of the source molecule represented by a smiles string in another
smiles string or an array of smiles strings representing a database of chemicals. Make sure that you
unselect hydrogens in your smiles string.
Options:
atom allow superpositions of all atom types
bond allow superpositions of all bond types
reverse searches

The following setup is optional:
prepare the target strings with the Smiles(a_//![hdt]*) function (exclude
hydrogen, deuterium and tritium)

♦

search the source string made without hydrogens♦
Only up to mnSolutions hits will be retained in the final table of hits. Change this shell
variable if necessary. The function will return the results in the following variables:

i_out - contains the number of hits♦
I_out - contains the integer array of the hit numbers♦

WARNING: This is obsolete way of chemical substructure searching. Use: find table Index
chemical other chemical functions

find molecule reverse ms_1 s_smile

WARNING: This is obsolete way of chemical substructure searching. Use find chemical
instead.
: find molecule sstructure [all] [tether]

find maximal common substructure in selected atoms of the two molecules. Without the all
option, one largest pair of matching fragments is identified. The pairs of equivalent atoms

198 find

separated by a vertical bar will be stored in S_out, e.g.

a_C2H6.m/1/c1|a_C2H6O.m/1/c1
a_C2H6.m/1/c2|a_C2H6O.m/1/c2

Options:

all : finds multiple matching fragments. Takes fragments with number of atoms >=
minMCSFragmentSize (3 by default)

♦

tether : tethers the matching as_molIcmObj2 atoms the equivalent atoms of
as_molObj1 . works only for the ICM_type objects (see convert and
convertObject)

♦

The tether option is useful since once the tethers are established, you can superimpose
a_//T according to these tethers, or optimize the molecule with tethers, e.g.

build smiles "C(=CC=C(C1)CN(CCNC2)C2)C=1"
build smiles "C(=CC=C(C1)N(CCNC2)C2)C=1"
ds a_*.
find molecule sstructure all tether a_1. a_2.
superimpose a_ # uses tethers to superimpose a_ on a_1.

The tethers can also be interactively edited (see delete tether command)

find molecule [tether] as_subFragmentQuery as_IcmTargetContainingQueryFragment
You can also use the alternative set of arguments and use molecular selections instead of the
smiles strings. The atom pairs of as_IcmTargetContainingQueryFragment aligned to each
sequential atom of the query molecule will be stored in the S_out array. The atom selection of
the target will also be returned in the as_out selection.
The tether option for ICM objects: After the equivalent sets of atoms in two molecules are
identified, tethers can imposed pulling atoms of as_IcmMolContainingQueryFragment to the
equivalent atoms of passive atoms as_subFragmentQuery . The matching atoms of the second
selection as_IcmMolContainingQueryFragment which are pulled by tethers to the
as_subFragmentQuery template positions can be superimposed with the minimize "tz"
v_positionalVariables command.
Important: unselect the hydrogens to speed up the matching procedure, e.g.

 find molecule a_1.//!h* a_2.//!h*

An example:

 build string name="a" "se nter his cooh" # query template
 build string name="b" "se nter his trp cooh" # target
 find molecule a_a./his/cg,nd1,ce1,ne2,cd2,cb,ca,n a_b. tether
 display as_out xstick # the tethered atoms of the target
 display a_*.
 minimize "tz" a_b.//?vt*
 show Rmsd(a_b.//*) # will show the RMSD of the equivalent atoms

See also: Smiles function and the build smiles command.

find chemical: finds SMARTS pattern in 3D

find chemical ms_sel s_smarts [all]

Searches using smarts pattern s_smarts in ms_sel. The result (matched atoms) will be stored
in as_out With all option it'll find all possible matchings.

Example:

 build smiles "CC1=NN=C(NS(C(C=CC(N)=C2)=C2)(=O)=O)S1" name="sulfamethizole"
 display wire
 find chemical a_ "a" all # finds all aromatic atoms
 display xstick as_out
 find chemical a_ "[$(N~[a;r6])]" all # finds nitrogen bonded to 6-member aromatic ring
 display cpk as_out

See also: find molecule sstructure SMILES/SMARTS description

find 199

find pdb: fragment search

find pdb rs_fragment os_objectWhereToSearch s_3D_align_mask [s_sequencePattern [
s_SecStructPattern]] [r_RMSD_tolerance]
Find a fragment (e.g. a loop) with certain geometry, sequence and/or secondary structure.
Arguments:

rs_fragment: the search fragment template♦
os_objectWhereToSearch: the other object.♦
s_3D_align_mask: marks the residues to be used in the 3D superposition and comparison
in terms of r_RMSD_tolerance (see below). The number of 'x's (or 'ON' bits) in the mask
must be equal to the query fragment length (it may be discontinuous), while the total
mask length should be equal to the found fragment length. For example, if you search for
an 11-residue loop with the same geometry of 3-residue ends, but any geometry of the
middle part your mask must be "xxx-----xxx". If you want to match geometry of
the middle part you would invert the mask: "---xxxxx---", etc.

♦

s_sequencePattern: Use "*" for any sequence. Otherwise you may use regular
expressions, for example: "?A[!P]???$".

♦

s_SecStructPattern: Use "*" for any secondary structure pattern. Otherwise, specify a
regular expression, for example "?HHH___EE[!_]".

♦

r_RMSD_tolerance: RMSD threshold to accept a fragment as a solution. To avoid
time-consuming optimal 3D superposition during the search, distance Rmsd
(i.e. root-mean-square deviation between two Ca-atom distance matrices of the compared
fragments) is used as a measure of spatial similarity on the preliminary stage of each
comparison. However, in the resulting list of hits, collected in SearchSummary string
array the optimal 3D superposition coordinate Rmsd is presented. Therefore, RMSDs
in the output list may exceed the specified threshold.

♦

Hits will be stored in s_out . The following just illustrate the syntax, it does not make much
sense, since you need to loop through a database of objects to find something interesting.
Example:

 read pdb "1crn"
 read object s_icmhome + "complex" # object in which to search
 find pdb a_1./16:18,20:22 a_2. "xxx----xxx" "V[LIVM]?????G??" "*" 2.5
 print s_out

find prosite or profile

find prosite [append] seq [r_minScore] [i_mnHits]
find matching prosite patterns, store results in the SITES table . Option append indicates
that the results should be appended to the existing SITES table. The default r_minScore is 0.7 .
The default i_mnHits is defined by the mnSolutions parameter.
Examples:

 read sequence "zincFing.seq"
 find prosite 1znf_m
 show SITES

find pattern

find pattern [number] [mute] s_sequencePattern [i_mnHits] [{
os_objectWhereToSearch | seq_Name | s_seqNamePattern } ...]
find specified sequence pattern (i.e. "[AG]????GK[ST]" for ATP/GTP-binding site motif A) in
ICM shell sequences or molecular objects. Hits will be stored in s_out . r_out contains the
number of found hits divided by the expected number of hits, as suggested by random distribution
of amino-acids with frequencies from the Swissprot database. This "found/expected ratio" is also
reported if l_info=yes. If this number is 1. it does not mean anything, 10. means that you can
publish the finding and two paragraphs of speculations, 10000. means that somebody else has
already found this hit. Pattern language:

^ sequence beginning♦
$ sequence ending♦
? one character♦
* any number of any characters♦
[ACD] alternatives♦
[!ACD] all but the specified residues♦
char \{ i_min, i_max \} : repetition. E.g. ?\{5,8\} from 5 to 8 of any character.♦

200 find

Other arguments and options:
number - just report the number of hits instead of reporting each match♦
mute - suppress terminal output (used in scripts)♦
i_mnHits - (default mnSolutions)♦
os_objectWhereToSearch - the target molecular object.♦
seq_Name - the target sequence. By default, the search is performed among all currently
loaded sequences.

♦

seqNamePattern - the target sequence name pattern to search through many sequences
loaded to the shell.

♦

Returned values
s_out - text output of all matches♦
i_out - the number of hits♦
r_out - the ratio to the random expectation (it r_out>1. it means that the number of hits
is larger than the random expectation).

♦

See also the searchPatternPdb macro.
Examples:

 read sequence s_pdbDir + "/derived_data/pdb_seqres.txt" # all pdb-sequences
 find pattern "[AG]????GK[ST]" # search for ATP/GTP-binding sites
 searchPatternPdb "^[LIVAFM]?\{115,128\}[!P]A$"
 # ^ : seq.start; ?\{115,128\} from 115 to 128 of any res.; $: seq.end

See also: read prosite, s_prositeDat .

find molcart : chemical search in Molcart database

find molcart [sstructure|similarity|exact] table=s_molcartTable [
s_smarts|S_smarts|chemarray] [r_distCutOff] [only] [stereo] [name=s_resultName]
[query=s_SQL_condition] [output=s_molcartTable] [number=i_maxHits]
[exclude=s_smarts|S_smarts] [append|delete] [connection_options]

Performes chemical search in Molcart database. Connection may be specified by
connection_options

Supported search modes are:

exact : exact match♦
sstructure : substructure♦
similarity r_dist : find similar compounds with distance cutoff r_threshold (between
0 and 1, e.g. 0.1 for very similar compounds)

♦

Other options:

append : the search results will be appended to the output table, if it exists.♦
delete : the specified output table will be overwritten if it already exists.♦
center : performs a K-means clustering of all chemicals in the specified table and
selects a representative.

number=, or◊
distance=◊

♦

query = s_SQL_condition> using existing table columns or on-the-fly built-in functions
(e.g. MolPSA) in an sql expression., e.g.

find molcart table="amri" query="MolLogP(t.mol)<2 and MolAtomCount(t.mol)=10"
 # t is a generic name for all tables

allows one to use the following built-in functions in sql-style expressions (see above) :
MolAtomCount, MolFormula, MolHBA, MolHBD, MolLogP, MolLogS,
MolMaxFusedRings, MolMaxRingSize, MolMinRingSize, MolNofMol, MolNofRings,
MolPSA, MolRotB, MolSmiles, MolVolume, MolWeight, MoldHf . It also allows
explicit fields of the specified table to be mentioned as well, e.g.
query="t.molid=2345" In SQL allowed logical and comparison operators are and,
or not , =, > < ≥ ≤ !=

♦

find 201

output : The output option allows one to save search results in another database
table s_molcartTable. It is possible to specify a table in another molcart connection by
using "connectionID;database.table" format.

♦

Examples :

 find molcart sstructure table="pub.all" "c1ccccc1" number=1000 name="myHits" # by substructure
find by substructure (contains 4 benzene rings)
 find molcart sstructure table="pub.all" "c1ccccc1" query="MolNofRings(t.mol)=4" name="tt"
 find molcart exact table="pub.all" t.mol # finds exact matches. chemical array pattern
 find molcart similarity 0.2 table="pub.all" "CC1=CN(C(NC1=O)=O)[C@H]1C[C@@H]([C@H](CO)O1)O"

See also: Index chemical Nof Find find table

find table : chemical search in ICM table

find table {T_table|filename=<s_file} {sstructure [group]|similarity|exact} [
s_smarts|S_smarts|chemarray] [r_distCutOff] [only] [stereo]
[query=s_ICM_condition] [name=s_resultName|select] [index=I_index]] [append]

Performs chemical and text search in the local table.

Arguments:

T_table : input table.♦
Alternatively an SDF or CSV s_file may be specified.♦
s_smarts or S_smarts chemarray : input pattern♦
search type: sstructure similarity exact♦
r_distCutOff distance cutoff for similarity search♦
With stereo option chirality will be taken into account in substructure and similarity
searches.

♦

group option toggles the special search mode when all atoms in the pattern except
attachment points are treated "as drawn" (not other attachments are allowed)

♦

With only option only number of hits will be returned.♦
With select option matched rows in the original table will be selected (not result table
will be created)

♦

name=s_resultName result table name (ignored with select option)♦
query=s_ICM_condition extra condition. Using this argument you can specify an
extra logical condition for the query. Column names, string constants and numnbers can
be used: For example : MolWeightWith append option, search results are appended to
the result table

♦

Examples :

 group table t Chemical({ "CC(=O)Oc1ccccc1C(O)=O", "CC(Nc1ccc(cc1)O)=O" }) "mol"
 add column t Mass(t.mol) name="MW"
 find table t query = "MW<160" select # select rows with molecular weight < 160

 cc = Chemical({"CC(=O)Oc1ccccc1C(O)=O","CCCc1c2c(C(NC(c3cc(ccc3OCC)S(N)(=O)=O)=N2)=O)n(C)n1"})
 group table t2 cc "mol"
 # compare chemical tables
 find table exact t t2.mol select # select rows in t
 find table exact t2 t.mol select # select rows in t2

 find table similarity t t2.mol select 0.5
 find table similarity t2 t.mol select 0.5

 # Not enough? Let's increase distance cutoff

 find table similarity t t2.mol select 0.8
 find table similarity t2 t.mol select 0.8

 # this command can also be used to select arbitrary rows in a table
 find table t2 select index = {1 3 5}
 Index(t2 selection)

See also: Index chemical Find find molcart SMILES/SMARTS other
chemical functions

202 find

find pharmacophore : pharmacophore search in ICM table

find pharmacophore as_pharmQuery chemarray3D [all]

Performs a pharmacophore search in chemarray3D using as_pharmQuery.

Example:

read binary s_icmhome + "example_ph4.icb"
find pharmacophore a_pharma. t_3D.mol

all option allows one to score all possible mapping for each conformation

See also: Rmsd superimpose makePharma

fix

fix vs
fix (exclude from the free variable list) specified variables (such as bond lengths, angles and
phases or torsions) in an ICM-object. This operation can be applied to the current object
only (use set object os_objectfirst). See also: unfix .
Examples:

 set v_//omg 180. # set all omega torsions to the ideal value
 fix v_//omg # fix all omega torsions

 fix v_/8:16,32:40/phi,PSI,omg* # fix the backbone in two fragments

Note using PSI torsion reference for correct residue attribution.

for

for
is one of the ICM flow control statements, used to start a loop in the ICM-shell. See also
while, endfor .

fork

a powerful tool for parallelization of ICM-shell scripts.
fork [i_nExtraProcesses] [pipe]
spawns one or the specified number of extra copies of ICM. This command will only work in a
non interactive mode, i.e. you should run icm like this:

 icm _multiProc # from the unix shell or
 unix icm _multiProc # from the interactive ICM-shell

The Index(fork) will contain the current process number, and Index(fork system)
returns process id. The parent process has both values at zero.
the pipe option will redirect the output to the parent process and synchronously print it in the
wait command

The simplest parallel script. Note that l_out==yes (or Index(fork)==0) defines if the script runs in
the parent process.

#!icm64 -s
fork 4
print l_out, Index(fork), Index(fork,all), Index(fork,system)
wait
print " back to parent"
quit
#

An example script _multiProc with a hypothetical macro bigDatabaseJob which takes two
arguments: the number of database chunks, the current chunk number, and the output file name:

 read libraries

find 203

 macro bigDatabaseJob i_nChunks i_Chunk s_outFile # definition
 ...
 endmacro

 read sequence "hot"
 fork 4
 # spawn 4 extra processes, total 5
 ip = Index(fork)
 bigDatabaseJob 5 ip "out"+ip
 # work on section ip,
 # save results to files out1 out2 ..
 wait # also quits all extra processes
 unix cat out1 out2 out3 out4 out5 >! out.tab
 read table "out.tab"

 quit

Parallel processing with aggregation through the internal pipe and without file output

See also:

Index(fork [system,all]) - current process index, pid, and current number of children♦
Nof(fork) - the number of available cores in the current computer♦
wait.♦

fprintf

fprintf [append] s_file s_formatString arg1 arg1 arg2 arg3 ...
formatted print to a file. The specifications for s_formatString are described in the printf
command section. In contrast to the print and printf commands, the result of the fprintf
command is not shown. E.g.

 fprintf "a.txt" "%s\n" "Day Temparature"
 fprintf append "a.txt" "%s %.2f\n" "Monday", 22.4
 fprintf append "a.txt" "%s %.2f\n" "Tuesday", 27.334

function

- a group of ICM commands with a name and arguments returning a shell data object. Definition:
function name (arg1 arg2) code code var = .. return var endfunction

Examples:

function Fibo(i)
 a=0; b=1; I={1}
 while b<i
 I = I //b
 x=a; a=b; b=x+b
 endwhile
 return I
endfunction
ii = Fibo(1000)
show ii

Example where the function returns a collection

function ArrayStats(R)
 c = Collection()
 if(Nof(R)<2) return c
 c["mean"] =Mean(R)
 c["sigma"]=Rmsd(R)
 c["A"] = 1./(c["S"]+1.e-18) # protection against div by zero
 c["B"] = -c["M"]
 n=Nof(R); sort R
 c["median"] = (Mod(n,2)==0)?((R[n/2]+R[(n+2)/2])/2.):R[(n+1)/2]
 return c
endfunction
ArrayStats({1. 2. 3. 4.})["median"]
c = ArrayStats({1. 2. 3. 4.})

see also macro.

204 fork

global command

global any_ICM_command
guarantees that the new ICM shell variables created or read to the shell are at the main shell level,
rather than nested inside macros.
By adding global to any read command in a macro you make the keep
variableName_or_type command at the end of the macro unnecessary. Example:

macro read_alignment s_file
 global read alignment s_file
endmacro

goto

goto
is one of the ICM flow control statements, used to jump over a block of ICM-shell
statements. See also break , continue .

group

group sequence

group sequence [fast] [seq1 seq2 ... | s_seqNamePattern | alignment | selection]
GroupName [pdb] [unique { i_MinNofMutations | r_MinDistance } [delete]]
group sequences into a sequence group to perform a multiple alignment with the align
command.
Option unique allows you to select only the different sequences. If no argument follows the
word unique, only identical sequences will be dismissed, otherwise they will be compared and
retained if the number of differences is greater than i_MinNofMutations (integer argument) or the
distance between two sequences is greater than r_MinDistance (real argument).

Option pdb activates preferences for higher resolution and first chain names ('a' is better than 'b',
etc.)

Option fast will activate the dictionary approach and will give a big time benefit for very large
collections (tens of thousand or more).

The comparison criterion is complex and has the following set of preferences which may be useful
in extracting a representative subset of sequences from a PDB-database:

longer sequence is better that shorter♦
with the pdb option, or if all the names contain the X-ray resolution 2 digit suffixes (like
a19 and 9lyz24, for resolutions 1.9 and 2.4 respectively), higher resolution is better (1.9
is better than 2.4). Note Resolution suffixes are added by the read pdb sequence
resolution command

♦

higher number in a pdb-file name is preferable, i.e. 9lyz is better than 3lyz. (I would not
die for this principle, though).

♦

with the pdb option, identical chains have alphabetical preferences (e.g. 9lyz_a is better
than 9lyz_b).

♦

Suboption delete tells the program to delete from ICM-shell all the sequences which were
found redundant by the unique option.
Examples:

 read sequences s_icmhome+"seqs.seq" # load sequences
 group sequence aaa # group ALL the sequences into aaa
 group sequence seq3 seq1 seq2 aaa # explicit version of the previous line
 align aaa # multiple alignment

 read sequences s_icmhome+"azurins.msf" # some of sequences are very close
 # but not identical
 group sequence myAzur unique fast 0.15 # 0.15 is a Dayhoff-corrected minimum
 # intersequence distance threshold
 group sequence myAzur unique 26 # all sequence pairs differ in
 # more than 26 positions
 group sequence myAzur unique delete # duplicates will be removed

function 205

group sequence unique: clustering, redundancy removal and
assembly

group sequence unique= "nt,junk,simple,overlap[> nRes]" [i_wordLen=6 [
i_dictDepth=10 [i_nofMutations=0]]] [delete] [nosort] [seq1 seq2 ... | s_seqNamePattern
| alignment] GroupName
If you read a very large redundant set of sequences and sequence fragments some of which may
(i) overlap or (ii) be included in another sequence, you may want to remove all the redundant
fragments, and merge the overlapping sequences into a smaller number of longer sequences. In a
simple case, if the number of sequences is not too large (less than a few hundred), this removal of
redundancies and fragments in your sequence set, can be performed with the group sequence
unique .. command described in the previous section.
To work on much larger sequences sets and allows one to merge overlapping sequences a more
advanced algorithm is needed. This ultra-fast removal of redundant protein or DNA sequences,
may also assemble the sequences into larger consensus sequences and is invoked by group
sequence unique= "options" command.
The command returns the result as a sequence group GroupName. Will work on tens of
thousands of sequences at once. The important features of the command:

it can cluster/unique millions of sequences very quickly (your computer just needs
enough memory).

♦

larger sequences incorporate the matching smaller ones.♦
merged or absorbed sequence names are added to the description of their master unless
nosort is specified

♦

merging (option "overlap") protein sequences requires sticky C-terminus letter 'X'♦
the algorithm is based on a dictionary approach and allows one to have mismatches♦
matching rules:

for proteins: any letter matches 'X', B=(D or N) and Z=(E or Q)◊
for nucleic acids: any letter matches 'N'◊
if possible, 'X','N','B','Z' are replaced by a more specific letter from the matched
sequence

◊

♦

Options (they can be combined in a comma-separated string, e.g. "nt,simple,junk"):
delete - the non-unique sequences are deleted not only from the group but also from
the shell

♦

nosort - do not merge descriptions of the merged sequences♦
unique= "simple" - the fastest mode. It will eliminate only the exact duplicates.♦
unique= "nt" means that DNA or RNA sequences are compared (the program
assumes protein sequences by default and a corresponding i_wordLen of six). This
implies the alphabet of A,C,G,T (or U) and the word length should therefore be
increased. The default nucleic acid sequence word length of 13 allows one to fit the entire
dictionary into the memory of 256 Mbyte. If your computer has less memory, reduce the
i_wordLen to a smaller value.

♦

unique="junk" this option tells the program to remove sequences that do not contain
any meaningful sequence. This means that they are mostly composed of 'X's or 'N's and
the intermittent sequence is shorter than i_wordLen. This option is almost always useful.

♦

unique="stripX" this option tells the program to strip X (or N for nucleotide)
character stretches from the beginning and from the end of the sequence. Those will be
compressed into just one character. Useful if your sequences were dusted or
repeat-masked.

♦

unique="noX" this option tells the program to skip the sequence quality
enhancements (replacement of 'X','N','B','Z' by a more specific letter from the other very
similar sequence).

♦

unique="complement" with this option the complementary nucleic acid sequences
will also be considered and removed if redundant. This option can not be combined
with the "overlap" option.

♦

unique="overlap[>numberOfRes]" Merge overlapping fragments in in addition
of deleting the subfragments from the set. The number of overlaping nucleotides or
amino acids can be redefined, e.g. unique ="overlap>25"

Two amino acid sequences are merged only if there is the overlap is greater
than the threshold (12 amino acids by default) and the overlapping C-terminal
residue is 'X'. An example of the allowed merge for protein sequences:

s1 VTIKIGGQLKEALLDXGADDTVLEEMSLPGX-------
s2 ----------EALLDTGADDTVLZEMSLPGRWKPKMIG
result VTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKMIG

◊

♦

206 group

If for some reason your ESTs do not terminate with 'X's, they can be added by
the following procedure:

 for i=1,Nof(sequence)
 sequence[i] = sequence[i] //Sequence("X")
 endfor
Two nucleic acid sequences are merged if the overlap is 30 by default. There
are NO special requirements for an 'X' nucleotide flanking the sequences.

◊

i_wordLen (6 by default, 14 if the unique="nt" option is specified). The length of a
word in the dictionary. The memory occupied by the dictionary depends exponentially on
his length.

♦

i_dictDepth (10 by default) limits the number of sequence fragments referenced
referenced from a single 'word'. This option prevents the dictionary from growing to
much in memory (what the product of i_wordLen * i_dictDepth) .

♦

i_nofMutations (zero by default) the maximal number of mutations/mismatches between
sequences which are considered to be redundant.

♦

See also:
Trans(seq_ frame) - to translate a DNA sequence♦
align new # to align a cluster and generate the consensus♦
Find(sequence , s_keyword) # to find a retired sequence with the s_keyword in its title
among the newly formed sequences

♦

show [color] ali_♦

group table

group table [copy] [u_name] [array [s_name] ..] header [sh_obj s_name ..]

WARNING: The append option of this function is obsolete. Use add column instead.

create a new table from individual arrays or append new columns or table header elements to an
existing table. This example shows how an ICM table including both header elements and
columns may look like:

group table t {1 2} "a" {"one","two"} "b" header "trash" "comment" 2001 "year"
 Info> table t (2 headers, 2 arrays) has been created
 Headers: t.comment t.year
 Arrays : t.a t.b

show t
 #>s t.comment # TWO HEADER ELEMENTS
 trash
 #>i t.year
 2001
 #>T t
 #>-a-----------b---------- # TABLE ITSELF
 1 one
 2 two
show t.comment t.year
 trash
 2001

Options:

copy: make a copy of the original ICM-shell object and move it to the table.♦
append: add specified ICM-shell objects to the table (default: overwrite) # not
recommended.

♦

In the header section each ICM-shell object should be followed by a string specifying the variable
name. The empty string will be interpreted as an indication to keep the name of the variable.
Unnamed constants such as {1 2 3} or "adsfasdf" will be automatically assigned unique names.

See also: split, Table , add column (to append columns) .
More examples:

 a=1 # integer a
 b=2. # real b
 group table copy t header a "ii" b "rr"
 # create table t with t.ii and t.rr header objects
 show t
 group table t header a "" b ""

group 207

 # t with t.a and t.b header objects
 show t
 group table t {1 2 3} {2. 3. 4.}
 # t with automatically named table
 # arrays t.1 and t.2
 show t
 group table t {1 2 3} "a" {2. 3. 4.} "b"
 # t with table arrays t.a and t.b
 show t
 split t # split the table into individual arrays

See also: group by column , split aggregated cells in a column by a separator.

group table by column with non-unique values

group t.keyColumnToGroupBy [{t.extraColumn|--all} [s_colRule[,colname]]] ... [
separator=s_sepString]
sorts and groups a table by unique values of the key column t.keyColumnToGroupBy . Then
applies the specified extra column value combination rules (or functions).
The following column cell merging rules can be applied to the numerical arrays:
"uniq"|"mean"|"min"|"max"|"first"|"last"|"rmsd"|"sum"
The string arrays can be grouped with the following subset of the above functions:
"uniq"|"min"|"max"|"first"|"last"
The "uniq" function is the default, and it means that the unique column values with the same key
field will be accumulated by the group command.

Function Description Array
Type

uniq merge unique field values into v1,v2,v3 I,R,S
first keep the first value in the grouped table I,R,S
last keep the last value in the grouped table I,R,S
mean find the mean value with the same key I,R
min find the minimal value with the same key I,R,S
max find the maximal value with the same key I,R,S
rmsd find the root-mean-square deviation of values with the same key I,R
sum find the sum of values with the same key I,R

Example:

group table t {1 2 1 1 2} {1. 2. 3. 4. 5.}
t
 #>T t
 #>-A-----------B----------
 1 1.
 2 2.
 1 3.
 1 4.
 2 5.

group t.A # groups in place
t
 #>T t
 #>-A-----------B----------
 1 1.,3.,4.
 2 2.,5.
split t.B separator="," # opposite operation in place, converts to rarray automatically

group table t {1 2 1 1 2} {1. 2. 3. 4. 5.}
group t.A t.B "sum,C" # sum t.B values and call the column C
#>T t
#>-A-----------C----------
 1 8.
 2 7.

There are two special rules "refmin" and "refmax" which can be applied in conjunction with
"min" and "max" and take rows corresponding to minimum or maximum values in the group.

Note that specifying all option instead of column name will apply operation for all the rest of
columns.

Examples:

208 group

group table t {1 1 2 2} {2 1 3 4} {"a" "b" "c" "d"} {"a" "b" "c" "d"}
group t.A t.B "min,B" all "refmin,C" name="t1"
group t.A t.B "max,B" all "refmax,C" name="t2"

See also: split aggregated cells in a column by a separator.

GUI and Programming Dialogs in ICM

gui [simple]

start menu-driven graphical user interface from command line. The GUI runs the icm.gui file
containing all the commands invoked by menus or pop-ups.
Option simple allows you to keep your terminal window separate from the graphics window.

% icmgl
 gui simple

You can also invoke gui from the command line, e.g.

GUI and Programming Dialogs in ICM 209

icm -g # or
icm -g mymenus.gui
icm -G mymenus.gui # keep the original terminal window

Terminal window and fonts
icm -g (or gui command) invokes a GUI frame with its own built-in terminal window . To
influence the font size in this terminal window, modify XTermFont record of the icm.cfg
configuration file, e.g.

XTermFont *-fixed-medium-*-*-*-24-*

If you prefer to keep the original terminal window use the icm -G option or invoke the gui
simple command from ICM shell (I keep alias guis gui simple in my personal
configuration file). In this case you can change the font of the terminal window with standard
means of the window manager.
3D Graphics window
GUI has a GL-graphics window which can be undisplayed with the

 undisplay window

command or from GUI by choosing Clear/No_graphics menu item.

See also: gui programming

help

get help from icm.htm file. Set s_helpEngine variable to "icm" (internal help in the text
window), "netscape" or any other web-browser. Important, make sure that the s_webViewer
variable points to your html-browser (e.g. s_webViewer = "firefox"), see also
File/Preferences/DisplayGeneral .
Getting help in built-in ICM html browser.

help command|function|icmVariable|s_icmHelpAncorName

help "I:anchorName"

open the specified section in the ICM Language Reference Manual

help "G:anchorName"

open the specified section in the ICM Program Guide

help s_htmlFileName # the file name must be followed by the pound sign

opens a single html file in the built-in ICM html browser. This file may contain sections of icm
script in the following format:

<!--icmscript name="action1"
read pdb "1crn"
display a_*.
-->
...
click here to execute icm script

help read pdb # opens the read-pdb section
help "G:learning"
help "I:montecarlo"
help "myfile.html#"

help command|function|icmVariable|icmHelpAncorName

help

help [input= s_fileName] [word1 word2 ...]
get full help in either text or html form, redirect it to the specified file, if the input option is
specified. Do not use plural forms of the nouns. Examples:

210 help

 help Random
 help read sequence

The built-in help engine does not know about keywords. It is recommended to use the on-line
version of the ICM manual which has a well-developed Index (download the newest version of the
manual, man.tar.gz from the Molsoft ftp site).

help commands

help commands [s_Pattern]
generates concise list of syntax lines for all or specified commands.
help functions

help functions [s_Pattern]
generates concise list of syntax lines for all or specified functions.
Examples:

 help # type /stereo, and then letter n or Bar

 help help # how to get help

 help commands # list syntax of all commands

 help commands "rea*" # list syntax of all read commands

 help functions # list syntax of all functions

 help functions Matrix # list syntax of the Matrix family of functions

 help # start the browser to use its own search means
 help montecarlo # just the command name
 help real constant

 help read pdb

 help Split

history

history [unique | full] [i_NumberOfLines]
display previous commands. Option unique squeezes out the repetitive commands. Without the
full option the commands executed from the file (rather than manually typed) will not be
shown. The unique option hides the repetitions of the same command.

For example:

 history 20 # show last 20 lines
 history unique

To delete all previous history lines, use the delete session command. In this case the
write session command will save only the new history lines.

if

if
is one of the ICM flow control statements, used to perform conditional
statements. See also: then, elseif, and endif .

info

info auto write

Shows information about when autosaving was performed in the current session.

help 211

Database additional statistics

info molcart [connection_options]

Prints additional information about the Molcart connection. Connection may be specified by
connection_options

See also: molcart

keep

keep ICM-shell-variable-name1 .. [global]
retain specified ICM_shell variables or their classes (e.g. real, rarray etc.). This command is used
in macros to avoid automatic deletion of all the local ICM-shell variables.
Also note that four classes of standard ICM-shell variables, reals, integers, logicals, and
preferences, are automatically restored to their initial values by default. You can use the keep
command to retain their new values.

Examples:

 macro rdseq s_pdbName # extract sequence from a pdb-file
 read pdb sequence s_pdbName
 rz = Resolution(s_pdbName,pdb)
 mncalls = 10 # the existing standard shell variable
 keep rz, sequence # retain all the sequences and rz
 keep mncalls # retain its new value
 endmacro

Note that by default values will be kept only for the one level higher. With global option changes
are propogated through the all nested levels to the global namespace.

Example :

s_a = "global"
s_b = "global"
macro m1
 m2
 print "m2: ", "s_a =", s_a, "s_b=" s_b
endmacro

macro m2
 s_a = "m2"
 s_b = "m2"
 keep s_a # will be kept only for m1
 keep s_b global # will be kept globally
endmacro

m1
print "global: ", "s_a =", s_a, "s_b=" s_b

join tables

join [left|right] T1.co1 T2.col2 [name= s_newTableName] [column=S_outputColumns
] [stereo off]

Unites some or all data of the two tables into another table. If the s_newTableName coincides with
the one of the tables, the new table will replace it. The default output table name is T_join .

The main two arguments are two columns T1.col1 and T2.col2 with matching values. You can use
chemical structure column to join by exact structure match. stereo off option can be added to
ignore chirality.

The column= argument contains the list of column names to be retained in the output table.

212 info

Columns in the new output tables.The columns for the output table can be listed as the
column= By default action is to include all columns from both tables. The columns by which the
tables are joined will turn into one, therefore the total number of columns by default will be
N1+N2-1.

Column names of in the joined table.The column takes are preserved unless they collide (i.e.
T1.B and T2.B are both present). The the latter case the first column retains its name while the
column from the second table will be named T2name.colName , (e.g. T_join.B ,
T_join.T2_B).

Types of the join commandThere are three types of the join command:

inner join - the default mode, no keyword needs to be specified. The inner join returns
all rows from both tables where there is a match in the order of the T1.col1 column. If
there are rows in T1.col1 that do not have matches in T2.col2, those rows will not be
included in the output column. This table can easily be empty, if the values do not
overlap. The number of rows of the output table is less or equal to the number of rows in
the first table. Example:

group table t1 {1 2 3} "A" # 1 has no match in t2
group table t2 {"a" "b" "c"} "A" {2 3 4} "B"
show t1,t2
 #>T t1
 #>-A----------
 1
 2
 3
 #>T t2
 #>-A-----------B----------
 a 2
 b 3
 c 4

join t1.A t2.B name="t3"
t3
 #>-A-----------t2_A-------
 2 a
 3 b

♦

leftThe left join returns all the rows from the first table, extended with the matching
rows from the second table. For T1.col rows there with no matches in the second table,
empty fields will be added. The number and order of rows of the output table is equal to
the number of rows in the first table. Example:

 group table t1 {1 2 3} "A" # 1 has no match in t2
 group table t2 {"a" "b" "c"} "A" {2 3 4} "B"
 join left t1.A t2.B
 T_join
 #>T T_join
 #>-A-----------t2_A-------
 1 ""
 2 a
 3 b

♦

rightthe right join returns all the rows from the second table, and appends fiels from
the first table if a match is found. It is identical to the left join but with two arguments
swapped (join left t1.A t2.B is the same as join right t2.B t1.A).
Example:

 group table t1 {1 2 3} "A" # 1 has no match in t2
 group table t2 {"a" "b" "c"} "A" {2 3 4} "B"
 join t1.A t2.B right name="ttt"
 ttt
 #>T ttt
 #>-A-----------B----------
 a 2
 b 3
 c 4

♦

localthe local join returns all the rows from the first table. Values in the matching (by
name) columns will be overwritten with values from the second table for matched rows.
Example:

add column t1 {1 2 3} {1 2 3}
add column t2 { 2 3} {4 5}
join t1.A t2.A local name="t1"

♦

join tables 213

See also the add table (command for appending a table with identical column structure) add
column or add column function (adding new columns)

learn from a training data set and create a predictive
model

learn t.Y | { Y t } | {Y t M} [all] [options]

learns how to predict column t.Y from other columns or a matrix using the specified method;
creates a modelobject.

Options:

type="pls"|"pcr"|"kernel"|"nn"

- the training method: partial least squares, principal component regression, kernel regression, or
nearest neighbor

kernel="dot"|"polynomial [iOrder C0]"|"radial [exp]"|"tanimoto"|"sigmoid [K
C]"

name= s_outputModelName

column= S_columnNames

- an array of column names

all

- forces to use all numerical columns in addition to the chemical column

test [= nCross|I_excludedTestRows] # cross-validation group number or test
rows

center # enforce the constant @@{w,,0} (see below) to be **zero .

select= R_2_c_eps

select= I_LatentVectorSetForPls

this command takes a real array Y and a matrix or table of descriptors and builds an optimal
cross-validated predictive model for property Y. This command can build several different types
of models:

Partial Least Square model (PLS-regression) in which Yi = w0 + Sum(wi*Xij)♦
Principal Component Regression (PCR) which is a similar linear model as PLSR, but
identified and build in a different way.

♦

The output of this command is the following:

a predictive model object (one-element parray of subtype 'model'. See also Parray(
model s_name))

♦

a new Ypred column with self-predicted values is added to the training set table♦
a new Yprex column with cross-validated values is added to the input table♦
rmsError and correlation coefficient for Self- and Cross-validated (CV) predicted values
(see the example) in R_out.

♦

Example:

read table "t.csv"
learn t.A
 learn t.A
 Info> plsRegression model for property 'Apred' built for 95 records.
 Corr_R2=0.44 (CV=0.36), rmsError=0.48 (CV=0.51)

learn t.pK test=4 select={2,10,20,30} method="pls"

See also:

214 learn from a training data set and create a predictive model

learn atom♦
learn-chemical♦
show parray # to see the create model♦
show modelName # to see the model details♦
Parray(model s_name) : create an empty model/collection for APF or docking or any
other types of models.

♦

Atom based predictors

Models to predict single atom properties. (e.g: pKa)

learn atom chemarray { R_learnValues|RR_learnValues } print=I_fingerprintParams
map=S_atomMappingParams [exclude=r_correctionThreshold [
number=i_nofCorrectionIterations]]

Link or assign reaction group arrays to a Rx positions
on a chemical scaffold.

link group scaffold i_R_GroupNumber1 chem_array1 i_R_GroupNumber2 chem_array2 ..

associate corresponding Rn positions on a scaffold with the chemical arrays. This operation copies
the chem_array into the scaffold, therefore the external array which was used to by this command
will remain in place. After the link operation the external array can be deleted.

link group scaffold i_R_GroupNumber delete

delete the association.

link group scaffold i_R_GroupNumber table
extract the R-group associated with the given position from the scaffold into a stand-alone shell
chemical table. One can read an RG file with a scaffold and RGroups and a scaffold with linked,
but hidden, arrays will be created. Then these arrays can be turned into external chemical tables,
edited and linked back to the scaffold.

write table mol scaffold "markush.mol" # creates an RG file
#
read table mol "markush.mol"
enumerate library scaffold.mol

link internal variables of molecular object

link vs_varChainToBeLinked

link molecule vs_inSeveralIdenticalMolecules
impose a chain of equality constraints (v[1] = v[2] = v[3] = ... = v[n]) on the specified variables
(or, in other words, keep the specified variables equal to each other). If one of the variables is
changed all the others will be changed. Energy derivatives are modified accordingly. This
command is great for modeling periodic structures (e.g. (Pro-Glu)n).

With option molecule , multiple chains of equivalent variables in several molecules will be
formed. Make sure that the variables are properly aligned and torsion angles are not linked to
phase angles.

Examples:

single chain
 build string "ala ala ala ala ala ala ala ala ala ala" # 10 alanines
 link v_//phi # all the phi angles should be equal
 link v_//psi # all the psi angles should be equal
 montecarlo v_/2/phi,PSI v_* # sample just one residue

multiple chains for a dimer
delete a_*.
build string "leu ala ala leu ala ala ala leu"

learn from a training data set and create a predictivemodel 215

copy a_ "b"
mv a_2. a_1.
ds a_
set v_1//tvt1 0.
set v_2//fvt1 180.
fix v_//tvt1,fvt1 # do not link those
link v_//* molecule
montecarlo v_1/* v_/*

Be careful with selections of psi variables in peptides since they are assigned in ICM to the first
atom of the next residue. PSI specification goes around that attribution.

Groups of linked variables can be deleted with the

delete link variable

command.

Link chains/molecules to sequences and alignments

link ms [ali1 .. [only] | alignment | sequence | seq1 seq2 ... seqN]
link or associate protein molecules with separate sequences or sequences grouped in an alignment.
If alignment ali_ is given, molecules are also linked to this alignment (note that the same sequence
can be involved in several different alignments). Amino-acid sequences of amino- or nucleotide-
chains in molecular selection ms_ will be compared with specified ICM-shell sequences and
identical pairs will be linked. Make sure that you specify one molecule selection, use logical or (|)
between the two selections if necessary. Linking molecules with alignments allows an automatic
residue-residue assignment by the following commands and functions: superimpose, set
tether, Rmsd and Srmsd . Alignments can be prepared in advance either automatically by the
align command or Align function, and/or modified by manual editing of the alignment file.

Arguments and options

ms_ : selection of chains to be linked, for example a_*. that means all molecules of all
objects. If no other arugments is specified ICM will rely on the linked sequences to find
the latest alignments containing those sequences.

♦

only : the sequences linking is not changed but the link to the specified alignment(s) is
attempted

♦

alignment : same as option ali .. only , but all alignments in the shell will be tried♦
sequence : ICM will try to link the specified chains (ms_) to the sequences in the
shell. Name matching will be attempted (e.g. a_1crn.a 1crn_a) .

♦

seq1 seq2 .. : try to link selected molecules with specified sequences. Note that the
sequence should be idential, usually it means that the sequence was produced with make
sequence ms_ .

♦

Short forms of the command:

link a_*. # try to find latest alignments for all the chains in the shell♦
link a_*. ali_target # find the matching sequences leading to the specified alingment,
establish links

♦

link a_*. sequence # search all sequences♦
Use the ribbonColorStyle="reliability" option and color ribbon to display the
local strength of the alignment. The strength parameter will be 3D averaged with the
selectSphereRadius radius.
The following illustrates the first step of homology modeling.
Example:

 build "newseq" # that is what you want to build by homology
 read pdb "template.pdb" # that is the known pdb-template
 read alignment "seq3Dali.ali" # prepared/modified sequence alignment
 # of the two structures
 set object a_1. # this is the first molecule that we
 # are going to model
 link a_*. seq3Dali # establish links between sequences
 # and objects
 set tether a_1,2.1 seq3Dali # impose tethers according to the alignment
 minimize tether # fold it according to the template

See also:

216 link internal variables of molecular object

l_autoLink♦
Name (ms alignment)♦
Name(ms sequence)♦
show link ms♦
delete link ms [alignment]♦
selecting by alignment conservation code (e.g. a_/CX)♦

list

list [alignment] [command] [factor] [function] [grob] [iarray] [
integer] [logical] [macro] [map] [matrix] [object] [profile] [rarray] [
sarray] [sequence] [string] [name1 name2 ...]

list find pattern|word
list ICM-shell objects matching the name pattern (all if name-pattern is omitted). The plural form
can be used for more natural expressions. 'list commands' actually means list all legal words
known by ICM (ICM command words). Use flanking asterisks to search in any position. Option
find or pattern automaticall transforms unquoted word into "*word*"
Examples:

 list # list the "most wanted" object-types
 list functions
 list sequences # if you have aliases, you can
 # type 'ls se' instead
 list "*my*" # all ICM-shell variables containing "my"
 list find my # the same as the previous search
 list pattern my # identical to the previous too

list graphic font : listing existing fonts for 2D and 3D graphics
labels

list font graphic

show currently active fonts used in 2D and 3D labels in the GL graphics window. The output
shows the font number, font size, bold-italic-underline and the number of labels using this font.
The font number refers to the following fonts:

courier1.
times2.
arial3.
symbol4.

Example:

list graphic font
 -#-F-sz-biu-rf
 1 2 24 1

list the content of the icm binary file

list binary [s_binaryFileName]
list the table of contents of the icm-binary multi-object file. The default name is -"icm.icb" and the
default extension is ".icb" . To read the whole archive, use the read binary command. For
a subset of objects, add the name= S_listOfNames option.
Note that the archive can also store graphical view parameters, tethers between the objects, and a
string buffer with the last session.
Example:

list binary s_icmhome + "example_docking"
 Binary file version: 1
 1 mn_saveAll integer 4
 2 a integer 4
 3 sarray 28
 4 sarray 28
 5 sarray 396
 6 grob 100992
 7 grob 88596

Link chains/molecules to sequences and alignments 217

 8 m_gb map 114280
 9 m_gs map 114280
 10 biotin object 5490
 11 DOCK1_rec object 265167
 12 displayView graphical view 293
 13 string 5322

read binary name={"biotin","DOCK1_rec"} "example_docking"

list available sequence databases

list database
gives a list of BLAST databases which can be used by the find database command for fast
sequence database searches. Normally, your system administrator should update the BLAST
sequence files. ICM just needs a path to this directory which is defined by the $BLASTDB system
variable. The output of the command is saved in the S_out array. This array can further be
processed with the Field function.
Example:

 list database
 dblist = Field(S_out, 2) # sarray contains search databases
 show dblist
 a=Sequence("PDPPLELAVEVKQPEDRKPYLWIKWSP")
 find database a dblist[2]

Trouble-shooting: If you get an error message, check the following:

check if you have a directory with the blast-formatted files.♦
make sure that your s_dbDir variable is defined in your _startup file and it contains
the path to this directory (do not forget the last slash, e.g. /data/blast/dbf/). You
can always assign it manually from the command line.

♦

list directory

See: Sarray(s_filename_filter directory [all]), sys

list molcart

list molcart [database=s_dbname]

gives a list of tables in the molcart database.

See also: molcart, rename molcart

list molcart connect

lists all registered database connections. Note that they do not have to be connected to be listed.

load

load things from the program memory (to load from disk files use read command). The opposite
action to load is store.
load conformation from stack

load conf [os1] i_confNumber [sstructure]
assign the i_confNumber-th conformation from the conformational stack and to the
current object (e.g. when you browse conformations accumulated after a montecarlo run). If
i_confNumber is zero, the best energy conformation will be loaded. Montecarlo stack
conformations are sorted according to energy values, however you may create your stack
manually with an arbitrary order.
Option sstructure will automatically recalculate the secondary structure according to the

218 list the content of the icm binary file

hydrogen bonding pattens.
Note that the full energy of this conformation which had been stored in the stack can be
accessed by the Energy("func") function.
If an object os1 is specified, the conformation is loaded from the stack stored in the specified
object. The command will update the information about the current conformation in the object's
stack.

Example:

 read stack "f1" # read conformational stack
 load conf 0 # set molecule into the best energy conformation
 display a_//ca,c,n # display the backbone
 for i=1,Nof(conf) # go through all the conformations
 load conf i # load them one by one
 print Energy("func") # extract its energy
 pause # wait for RETURN
 endfor

load trajectory frame conformation

load frame i_trjFrameNumber [s_trjFileName] [sstructure]
load specified frame from the trajectory. Note that the full energy of this conformation which had
been stored by the simulation procedure can be accessed by the Energy("func") function.
Option sstructure will automatically recalculate the secondary structure according to the
hydrogen bonding pattens.
Examples:

 build "alpha" # build extended chain of the Baldwin peptide
 read trajectory "alpha"
 display trajectory "alpha" center # a-ha! conf in frame 541 is interesting
 load frame 541 "f1" # extract conformation from frame 541
 print Energy("func") # print its energy without recalculating

create database table view

load molcart table[=s_sql_table] {T|name=s_result_table} [filter=s_filter]
[sort=s_sort_columns] [number=i_limit(1000)>] [<connection_options]

Loads rows from a database table s_sql_table. First i_limit rows sorted by s_sort_columns
according to conditions specified in the s_filter condition are loaded. If some options are not
provided in the command and the table is specified as, the following fields from the table header
may be used:

queryLimit for i_limit♦
queryOrder for s_sort_columns♦
queryFilter for s_filter♦

load molcart table T refresh [connection_options]

Reloads requested rows from the database based on the ID values in the primary keys column in .

Connection may be specified by connection_options . If the connection or the table are
not specified, this command tries to get their specification from the table header:

querySource specifies the database table in database.table format♦
queryConnection describes the connection (not by connectionID)♦

Tables produced by the load molcart command are treated as special "database view" tables in the
GUI.

See also: molcart, find molcart, query molcart

load a structural alignment solution

load solution [i_solutionNumber]
loads the specified solution previously stored by the align rs_residue1 rs_residue2 ..
command. The two output selections as_out and as2_out contain equivalent residues of the

load 219

specified solution. The second object will be superimposed according to the Ca atoms of the found
equivalent residues.
Example:

 read pdb "4fxc"
 read pdb "1ubq"
 display a_*.//ca,c,n
 color molecule a_*.
 align a_1.1 a_2.1 12 1.5 .1
 center
 load solution 2 # load the second best solution
 color red as_out
 color blue as2_out
 for i=1,10
 load solution i
 color molecule a_*.
 color red as_out
 color blue as2_out
 pause # rotate and hit 'return'

 endfor

load conformational stack from an object

load stack os

extracts the compressed stack from inside the object and overwrites the existing stack . This
mechanism can be used to switch between several objects withing one session and use their stacks
without any need to work with stack files. Alternatively, in-object-stacks can be saved with the
object and read back to a session.

Example:

 read object "objeWithStack.ob"
 if(Exist(a_ stack)) load stack a_

See also:

store stack object♦
delete stack object♦
montecarlo .. store♦
set object .. stack♦
Exist (os1 stack)♦

load object from parray or parray in a collection

load object objArr [name=s] [delete]

Example:

read pdb "1crn"
read pdb "2cpk"
p = Parray(object)
delete a_.
load object p[2]
#
c = Collection()
c["ob"]=a_1.
delete a_*.
load object c["ob"] name="x"
load object c["ob"] name="x" delete # overwrite the previous a_x.

ICM-shell macros and functions

a named group of ICM commands with arguments that can be called and executed from the ICM
shell. A very similar entity is a user-defined (or icm-shell) function that is like a macro but may
return a value and be nested. Macros of functions can be :

defined or loaded♦
called/executed♦

220 load

Macro can call another macro (nested macros).
Syntax of the macro definition:
macro macroName [mute|auto] prefix1_macroArg1 [(default1)]
prefix2_macroArg2 [(default2)] ...

icm_commands

endmacro

To invoke macro just type its name and provide arguments if necessary.

Naming of the formal arguments of macros and functions. The formal arguments in macros
and functions need to be named in a special way to imply the type definition. For example a
formal variable which is meant to be a string need to be called s or s_inputstring

Example of a simple macro without arguments:

macro creates_a
 # commands
 a=1
 keep a # used to push 'a' to the upper level, 'keep global' for all levels.
endmacro
creates_a # calling macro a
show a # checking if it creates variable 'a'

Example of a simple macro with arguments:

macro countMetalNeighbors as_ r_dist (5.)
 l_commands = l_info = no
 nMetals = Nof(Mol(Sphere(as_ , a_*.M , r_dist)))
 print " nMetals = ", nMetals
 keep nMetals
endmacro
read pdb "1are"
countMetalNeighbors a_/his,as* 4.

Example of a shell-function (not to be confused with the built-in functions):

function Bold(s); return ""+s+""; endfunction
Bold("Hey") # returns "Hey"

See also function .

Formal argumentsThe formal argument names should have explicit prefixes (i_ , r_ , s_ , l_ , p_ ,
I_ , R_ , S_ , M_ , seq_ , prf_ , ali_ , m_ , g_ , sf_ , as_ , rs_ , ms_ , os_ , vs_ , see above) to
specify their type. The simplest formal argument name is the prefix without the trailing
underscore. If your argument list is incomplete, you will be prompted for the missing argument.
Type q or enter empty string to quit the macro without execution. The following features make
ICM macros extremely convenient to use:

no need to explicitly define types of arguments (implicit definition by name)♦
one may specify an arbitrary subset of arguments and in arbitrary order if the arguments
have different types

♦

an easy and flexible way to provide defaults in parenthesis after the argument♦
automatic prompting of the missing arguments by default, or substituting the default
values if the macro is defined as auto .

♦

automatic restoration of all the changed standard ICM-shell variables upon execution.♦
new variables defined in the macro are local and will be automatically deleted upon
execution, unless they are protected with the keep (or keep global) command.

♦

Defaults can be provided in parentheses as simple constants (i.e. i_window (8)), or as the whole
expressions (i.e. i_1 (mncalls) r_a (Sin(*2.)) i_2) . Default expressions can also be omitted.
Options

auto automatically use defaults for the arguments missing in the command string.
Example: nice "2ins". Since the second logical argument l_wormStyle is missing its
default value no will be used automatically.

♦

mute will suppress automatic prompting. Do not use parenthesized defaults with this
option.

♦

The predefined standard ICM-shell integer, real, and logical variables, as well as
preferences (i.e. i_out, l_warn, wireStyle, PLOT.logo etc.) are be automatically restored upon

ICM-shell macros and functions 221

completion, if changed in the macro, to retain the new value use the keep command. Note that
the string variables should be restored explicitly. Many macros are supplied with the program.
Examples:

display molecule as a worm colored from N- to C- term.
 macro dsWorm ms_ (a_*) r_wormRadius (0.9)
 GRAPHICS.ribbonWorm = yes
 GRAPHICS.wormRadius= r_wormRadius
 display ms_ ribbon only
 for i=1,Nof(ms_) # color each molecule separately
 color Res(ms_[i]) Count(Nof(Res(ms_[i]))) ribbon
 endfor
 endmacro

To invoke the macro, type

 read object s_icmhome+"crn"
 dsWorm a_1 0.7

or just

 dsWorm # and press Enter

A set of ICM macros is given in the _macro file.

See also function

make

is a family of commands which create new objects of parts of them.
make background : spawning background jobs and processing
their output.

make background s_external cmds [command=s_icmCmdsUponCompletion]
[info=s_Message] [name=s_jobName] [simple]

This command runs a set of external commands written in a form that can be executed as an
external process. Upon execution of these external commands the ICM client will receive the
s_Message (by default it will be the following message: "background job 'jobName'
completed. Press OK to load the results". You can also specify which
commands can be executed by the ICM client to load the results of this job. Arguments:

s_externalCommands # e.g. "grep a *.tx >! b" use Path() function to run an ICM thread♦
name= s_jobName # e.g. name= "j1"♦
command= s_\n_separated_list_of_ICM_commands # default is empty string.♦
info= s_completionMessage # e.g. "Finished. Press OK to read the model"♦

The make background command the following features:

it is portable and works under different operating systems.♦
it needs ICM in the GUI mode (icm -g)♦
to specify a correct external ICM call, you can use the Path(unix, s_options), e.g. make
background Path(unix "_action ") command="read object
OUTPUT\nread stack OUTPUT"

♦

simple option creates completely detached job. ICM will not keep any information about that
process. This option is useful if you want simply to launch an external program and don't want to
have any further interaction with it.

make background "ls > tmp.txt" command="read string \"tmp.txt\" " info=""
 # the empty info arg suppressed the dialog
show s_out
#
make background name="job1" Path(unix,"_myScript",{"-n","-s"})
 # Path(unix,..) returns current ICM location

A Windows example:

make background "\"c:\\Program Files\\Microsoft Office\\WINWORD.EXE\" C:\\Temp\\Doc1.doc" simple

222 make

See also:

sys command♦
Unix function♦

make bond: forming a covalent bond

make bond as_singleAtom1 as_singleAtom2 [type=i_type]

adds a covalent bond between two selected atoms in a non-ICM molecular object (e.g. X-ray or
NMR pdb-entries) or resets the bond type (for ICM objects use make bond simple The
command is used to correct erroneous connectivity guessed by the read pdb command. This
correction makes the molecule displayed in the graphics window look better and is necessary
before conversion into an ICM molecular library entry (see icm.res or user library files) using
the write library command. It can also be useful to display a connected Ca-trace. In
interactive graphics mode you may type make bond and then click two atoms with the Control
button pressed.
The type= option allows one to set the bond type (i_type ={1|2|3|4} , for a single (default),
double, triple and aromatic bond, respectively.

make bond simple as_singleIcmAtom1 as_singleIcmAtom2

forms a bond, e.g. for peptide cyclization. One needs to unfix the following energy terms for that
bond to be minimized properly:

build string "ala ala ala ala ala"
make bond simple a_/1/n a_/5/c
set term "bb,bs,af"
minimize

make bonds in an atomic chain

make bond chain as_chainOfAtoms
connects specified atoms in a linear chain. Useful for PDB entries containing only Ca atoms.
Examples:

 read pdb "4cro" # contains only Ps and Ca's
 display # Milky sausage
 make bond chain a_4cro.//p # connect P atoms of the DNA backbone
 make bond chain a_4cro.//ca # connect Ca atoms of the protein backbone

See also: delete bond.

make boundary: Poisson electrostatics

a command to prepare for the boundary element electrostatic calculation
make boundary [as]
this is an auxiliary command which is required if you need to calculate the electrostatic free
energy with the boundary element method several times. Optional atom selection as_
from which the electrostatic field is calculated can be specified. This may be the case if the charge
distribution changes but the shape does not. However, the boundary does depend on the dielectric
constant parameters such as dielConst and dielConstExtern . If you intend to change
them the boundary need to be remade every time. This command does not generate any output by
itself, it just creates the internal table which can later be used by the show energy command or
the Potential() function.
The dielectric boundary is a smooth analytical surface which is built with the contour-buildup
algorithm (Totrov,Abagyan, 1996). The surface looks like the skin surface, but uses
different radii which were optimized against experimental LogP data. Both skin and the dielectric
boundary uses the same water radius (the waterRadius parameter). The "electrostatic" radii
used by ICM to calculate the boundary are stored in the icm.vwt file.
See also: REBEL, surfaceAccuracy, electroMethod, delete boundary, show
energy", term "el", Potential().
Examples:

 electroMethod="boundary element"
 read object s_icmhome+"rinsr"
 delete a_w* # get rid of water molecules

make 223

 make boundary a_1 surfaceAccuracy = 5 # calculate params of the dielectric boundary
 show energy "el" # electrostatic energy by BEM
 e1=Energy("el") # extract the energy
 set charge a_/33/cd*,hd*,ne*,he*,cz,nh*,hh* 0. # uncharge arg33
 show energy "el" # electrostatic energy of the uncharged Arg33
 e2=Energy("el") # extract the energy
 print e1-e2
 delete boundary # memory cleanup

make directory

make directory s_Directory
make specified directory. Example:

make directory "/home/doe/temp/"

See also: sys , set directory, delete directory, Path(directory)

make disulfide bond

make disulfide bond [only] as_atomSg1 as_atomSg2
form breakable disulfide bonds between two sets of specified sulfur Sg atoms, regardless of the
distance between them. Forming the bond means that two Hg hydrogens of Cys residues are
dismissed, a covalent bond between two Sg is declared (but not enforced) and four local distance
restraints (see icm.cnt) are imposed. These restraints are indeed local, since two Sg atoms only
start feeling each other when they are really close, otherwise the energy contribution is close to
zero . Option only causes deletion of previously formed disulfide bonds, otherwise the new one
is added to the existing list of disulfide bonds.

Examples:

 build string "se cys ala cys" # sequence containing two cysteins
 display # display an extended ICM model of the sequence
 # set only one SS-bond, disregard all previous
 make disulfide bond a_/1 a_/3 only
 montecarlo # MC search for plausible conformations

See also: delete disulfide bond and (important!) disulfide bond.

make drestraint: extract distances structure

make drestraint as_select1 as_select2 r_LowerBound r_UpperBound r_LowerCorrection
r_UpperCorrection [s_fileNameRoot]
create two files containing the list of all the atom pairs specified by two selections (i.e. a_* a_* -
all the pairs; a_1//* a_2//* atom pairs between molecules 1 and 2 for which the interatomic
distance lies between r_LowerBound and r_UpperBound.
Note: it is critical that both selections are in the same object. Only tethers can pull to atoms of
a different object.
For each pair of atoms a distance restraint type is created with lower bound less than
the actual interatomic distance by r_LowerCorrection and upper bound greater than the actual
interatomic distance by r_UpperCorrection. This command can be used for example to impose
loose distance constraints between two subunits.
The number of the formed drestraints is returned in the i_out variable.
See also: set drestraint as_1 as_2 i_Type
if you want to impose a specific drestraint.
Examples:

 read object s_icmhome+"complex" # load a two molecule complex for refinement
 # extract all Ca-Ca pairs between 2 and 5 A
 # for each pair at distance D create distance
 # restraint type with lower bound D-2.5 and
 # upper bound D+2.5
 make drestraint a_1//ca a_2//ca 2. 5. 2.5 2.5

224 make

make factor: FFT calculation of diffraction amplitudes and phases

make factor map_Source {I_3Maximal_hkl | r_resolution}
[s_factorTableName[s_ReName[s_ImName]]]
calculate structure amplitudes and phases from the given electron density map by the Fast Fourier
transformation. The table ' s_factorTableName' with h,k,l and structure factors will be created
(further referred to as T for brevity). It will contain the following members:

three integer arrays of Miller indices: T.h T.k T.l♦
two rarray of real and imaginary parts of the calculated structure factors. Default
names: T.ac and T.bc, respectively. Alternative names can be explicitly provided in the
command line.

♦

If structure factor table s_factorTableName already exists, structure factor real and imaginary
components are created or updated in place. Any other arrays containing experimental, derivative
or control information may be added to the table and participate in selections and sorting.
Example:

 read map s_icmhome+"crn" # load "crn.map"
 set symmetry m_crn 1
 make factor { 5 5 5 } "F" # h_max=k_max=l_max=5
 # F.h, F.k, F.l, F.ac, F.bc are created
 show F
 group table append F Sqrt(F.ac*F.ac + F.bc*F.bc) "Fc" Atan2(F.bc,F.ac) "Ph"
 sort F.Fc
 show F

make flat chem_array

make flat chem_array [rotate] [hydrogen] [window=r_WidthToHeightRatio]
[index=I_indices]

convert a chemical array into standard automatically generated 2D chemical drawings in place
(compare with Chemical(Smiles(chem_array), smiles) which does not touch the source
array). A chemical array can created by the read table mol command. The compounds in
the source file can be 0D (all coordinates set to 0), 3D or 2D. In all cases these x and y coordinates
are can not be used for chemical drawing and one needs to use the above command to generate 2D
drawings. The command also preforms rotation for optimal fit into rectangle with specified width
to height ratio (window argument). Default ratio is 1.5.

Other options:

rotate : does not coordinate assignment, preforms only best fit rotation♦
hydrogen : keep explicitly drawn hydrogens♦
index : performs operation only on selected compounds♦

Example:

 read table mol s_icmhome+"template_3D.sdf"
 make flat template_3D.mol

See also: Chemical , read table mol .

make grob map command to contour electron density or grid
potentials

make grob m_map [header] [solid] [box] [I_indexBox[1:6]] [[exact]
[field=]r_sigma|r_absValue] [as [margin=r]] [name=s]

make grob m_map add r_sigmaIncrement make grob m_map add exact
r_absoluteIncrement # build a contour that can be modified

make grob g_existingContourGrob add r_sigmaIncrement # rebuilds and redraws an
existing contour

Create graphics object by contouring electron density map at a given threshold.

threshold: By default the contouring level is calculated as the mean map value (returned by Mean
(m_map)) plus mapSigmaLevel times root-mean-square deviation value. If a real value
argument is provided, the mapSigmaLevel shell variable is redefined. Option exact allows

make 225

one to specify absolute value at the contouring is performed. If atom selection is specified, contour
will only be built around as_, with the optional additional margin. Helpful in contouring ligand
from electron density map.

Other options:

header this option adds the name of the source map and the command to recalculate the
grob at different contour level.

♦

Example:

 build string "his glu"
 make map potential Box(a_ 3.)
 make grob m_atoms 3. # 3 sigmas above the mean
 # make grob m_atoms .2 exact # countour at 0.2 level
 # .2 or .1 exact is useful to detect almost closed pockets
 display g_atoms
 #
 make grob m_atoms exact 0.15 # at value of 0.15
 display g_atoms
 #
 mapSigmaLevel = 1.5
 make grob m_atoms add 0. # at mapSigmaLevel
 make grob g_atoms add -0.1 # at 1.4 sigma
 #
 loadEDS "1atp" 0.
 read pdb "1atp"
 make grob m_1atp 1.5 a_atp
 cool a_
 display g_1atp

Defaults:

create simple chicken wire map (sections in three sets of planes, NOT solid)♦
take the current map;♦
generate the name of the grob which is the same as the map name except for the g_
prefix;

♦

contour the whole map♦
use threshold value from the ICM-shell real variable mapSigmaLevel .♦
mapSigmaLevel is changed if the exact option is used♦

Option solid tells the program to create a solid triangulated surface which can later be displayed
by display grob solid command. The threshold is expressed in the units of standard
deviations from the mean map value, i.e. 1.0 stands for one sigma over the mean. I_indexBox [1:6]
is optional 6-dimensional iarray containing { i_startSection i_startRow i_startColumn
i_NofSections i_NofRows i_NofColumns }. It overrides the default, contouring the whole map.
Option box adds surrounding box to the grob.

make grob image command to create a vectorized graphics object.

make grob image [name=s_grobName]
create a vectorized graphics object (grob) from the displayed wire or solid objects. The
information about colors will be inherited. Very useful if you want to export wire, ribbon or
CPK into another graphics program, since graphics objects can be written in portable
Wavefront (.off) format. Further, graphics objects can exist independently on the molecules which
may be sometimes convenient. Also, underlying lines and vertices can be revealed. The graphics
object created from the displayed solid representations assigns and retains color information as lit
in a given projection. These colors can not be changed. Use special make grob skin
command to generate a more elaborate graphics object from skin .
Examples:

 read object s_icmhome+"crn"
 ds a_crn.//!h* ribbon # ribbon
 make grob image name="g_rib"
 display g_rib smooth only # try select g_rib and Ctrl-X,Ctrl-E/W etc.
 # option smooth eliminates the jaggies.
 write g_rib # save to a file

226 make

make grob matrix

make grob [solid] [bar[box]] [color] M_matrixName
[r_istep r_jstep r_kstep] [[name=]s_grobName]
 Create a three-dimensional plot from M_matrixName, so that x=i*
r_istep, y=j* r_jstep and F(x,y)= k* M_matrixName[i,j]. Options:

bar : generate rectangular bars for each i,j matrix value instead of a smooth surface.♦
box : add a box around the 3D histogram♦
color : color grob by value according to the PLOT.rainbowStyle preference.♦

solid : tells the program to triangulate the surface

♦

Examples:

 read matrix s_icmhome+"def"
 make grob def solid
 display
OR
 read matrix s_icmhome+"ram" # phi-psi energy surface
 make grob ram 1. 1. 0.1 # create the surface
 display g_ram magenta # display it
 make grob solid ram 1. 1. 0.08 name="g" # create the surface
 display g solid gold # display it

make grob potential

make grob potential [solid] [as_1 [as_2]] [[field=]r_potentialLevel]
[grid=r_gridCellSize] [margin=r_margin] [[name=]s_contourGrobName]

Example:

make grob potential a_lig

create graphics object of isopotential contours of electrostatic potential which takes not
only the point charges but also the dielectric surface charges resulting from polarization of the
solvent. This potential need to be calculated in advance by the boundary element algorithm.
Contours can be displayed in the wire and solid representations (see also display grob). The
default parameters are:

r_polentialLevel 0. kcal/mole/electron_charge_units.♦
r_gridCellSize 0.5 A (you may want to increase it up to 2A for speed).♦
r_margin 5.0 A (you may want to reduce it for speed).♦

See also: make map potential, electroMethod, make boundary, show energy
"el", term "el", Potential().
Examples:

 build string "se his arg glu"
 electroMethod="boundary element" # REBEL algorithm
 make boundary
 make grob potential solid 0.1 grid=2. margin=4. name="g_equipot1"
 display g_equipot1 transparent blue
 make grob potential solid field=-0.1 grid=2. margin=4. name="g_equipot2"
 display g_equipot2 transparent red
 ds xstick residue label

make 227

make grob skin or surface

make grob skin [wire | smooth] [as_1 [as_2]] [[name=]s_grobName]
[r_transparency]

make grob surface [color] [wire | smooth] [as_1 [as_2]] [[name=]s_grobName]
[r_transparency]

create grob containing the specified
molecular surface (referred to as
skin). If the wire option is given the
transparent wire grob will be created
(solid grob is the default). It will have the
same default color. The disconnected
parts of this grob may later be split .
The grob will be named by the default
name g_objName unless the name is
explicitly specified. The final actual
name will be returned in s_out .
The smooth option allows one to close
the cusps. This closure is necessary to
enable the compress grob operation.
The compress g_ command allows one
to dramatically simplify the triangulated
surface and reduce the number of
triangles. Typically compress g_ 1.
will reduce the number of triangles by an
order of magnitude.

A grob can later be colored with the color grob potential command.
Examples:

 read object s_icmhome+"crn"
 # skin around a substructure, (just as an example)
 make grob skin a_/1:44 a_/1:44 0.6
 split g_crn_m
 display g_crn_m2 a_//*
 show Area(g_crn_m2), Abs(Volume(g_crn_m2))

 make grob skin a_ a_ name="gg1" # display gg1 now
 make grob skin wire name="gg2" # display gg2 now

 make grob skin smooth a_/1:20 a_/1:20 name="gg3"
 compress gg3 1. # simplifies the surface

The transparency can also be set with the set grobname r_transparencyLevel
command.

See also: set color to set atom colors

Creating 3D label objects

A number of commands in ICM enable the creation of "3D label" objects which help to measure
and annotate geometry in the 3D space, like distances and angles. Some 3D labels, like hydriogen
bonds, illustrate concepts which depend on the geometry and the structure of molecules. 3D labels
are stored in a parray object of a "label3d" subtype.

3D labels defined on atoms are dynamic: visual angle/distance information is updated depending
on the changes in the atom geometry.

3D label creation commands have similar structure. Commands which are currently available are:

make distance to create distance labels;♦
make hbond for hydrogen bonds;♦
make angle for planar angles;♦
make torsion for dihedral angles.♦

Each of these commands has specific arguments. but there is a number of common options:

228 make

name = s_n the name of the created array of 3D labels
append append new 3D labels to the existing array;
delete forcefully delete the array before repopulating it with 3D labels;

refresh keep all existing 3D labels which are outside the specified selection, rebuild 3D
labels inside the selection;

display display the created labels.

make distance

make distance as_1 [as_2|auto] [molecule|align] [r_maxdist] [3d label options]

creates a parray with distances between all atoms in as_1 and as_2, or all atoms within as_1 if
the second selection is not specified.

Output

the distance parray♦
i_out with the number of distances in that parray♦

Examples:

 read object s_icmhome+"crn"
 display ribbon wire
 make distance a_//oe* a_//ne,nh* display
 make distance a_//oe* a_//ne,nh* 5. delete display

Example in which we detect clashes:

 make distance a_//!vt* a_//!vt* 1.5 # creates a distance object
 CLASHES = Table($s_out distance) # s_out stores name of distance-object
 sort CLASHES.dist
 show CLASHES.dist<0.8

See also:

make 3d label and make hbond for further comments on the command options.♦
Table(distobj distance)♦
Nof(distobj distance)♦

make hbond

make hbond as_1 [as_2 | auto] [molecule | align] [r_maxdist] [3d label options]

creates an array with all hydrogen bonds contained in as_1, or between as_1 and as_2 if the
second selection is specified. Hydrogen bonds are calculated according to several shell parameters
listed below. It is possible to specify the upper limit for the distances between atoms which will be
considered as potential bond using the r_maxdist value.

Other options and shell parameters:

molecule option forces to create only intermolecular bonds♦
auto mode automatically sets the molecule mode if contains more than one molecule♦
align : "1-1 selections"♦
GRAPHICS.hbondAngleSharpness (1.7)♦
GRAPHICS.hbondBallPeriod (1.2)♦
GRAPHICS.hbondMinStrength (1. , allowed range (0.,2.))♦
GRAPHICS.hbondWidth (0.6)♦
GRAPHICS.hbondBallStyle♦
GRAPHICS.hbondRebuild♦
GRAPHICS.hbondStyle (label style)♦

Examples:

 read object s_icmhome+"crn"
 display ribbon wire
 make hbond a_ display GRAPHICS.hbondMinStrengh=0.5 name="x"
 t = Table(x,distance)
 sort t.dist
 show t[1]

make 229

See also:

make 3d label for the explanation of 3d label options♦
"dynamic" single object hydrogen bonds♦
Table(hbonddist distance)♦

make angle

make angle as_3_connecting_atoms [3d label options]

creates a planar angle 3d label. Requires a selection containing 3 connecting atoms.

See also: make 3d label , Table(angles,distance)

make torsion

make torsion as_4_connecting_atoms [3d label options]

creates a dihedral angle 3d label. Requires a selection containing 4 connecting atoms. Examples:

 read object s_icmhome+"crn"
 display ribbon wire
 make angle a_/22/c | a_/23/n,ca display
 make torsion a_/22/ca,c | a_/23/n,ca display

See also: make 3d label , Table(tors, distance) .

make/store graphical image to image parray

make image [library=s_albumName] name="Party2007.png"

will save the graphical image to the internal album (a parray). The name will be used if you
decide to save the album to a file.

Example:

make image # will create album if it does not exist
make image #
make image #
delete variable album 2

make key # obsolete

make key {s_smiles | as} [S_arrayOfFragmentSmiles]
Note: the make key command is obsolete. The new chemical fingerprints are dynamic and does
not have a predefined set of fingerprints of variable length. The new fingerprints are used in the
following commands and functions:

Distance(chem1 chem2) or chemical distance matrix♦
search in Molcart databases♦
search in loaded 3D objects♦
etc.♦

This command generates a binary chemical key, i.e. a bit-string in which each bit corresponds to a
chemical substructure, converts the bit-mask into the hexadecimal string and saves this hex-string
in s_out . The bit-string with chemical substructure information can then be used to calculate the
Tanimoto similarity distance with another chemical key.
By default the make key command uses a built-in array of 96 substructures, and generates a
24-character hex-string (each hex-character codes for 4 bits), however any string array of
subfragment smile-strings (S_arrayOfFragmentSmiles) can be provided.
The hex-string can be converted back into an array of bits packed into integers with the Iarray(
{ s_chemkey | S_chemkey } key) function.
The bit-distance matrix between two arrays of bit-strings represented by two iarrays can be
calculated with the Distance(Iarray(S_1 key) Iarray(S_2 key) i_nBits [key]) or
Distance(Iarray(S_1 key) Iarray(S_2 key) i_nBits simple) functions, where the
number of bits, i_nBits, is usually 96, unless you use a user defined array of fragments. There is
also a weighted form of the chemical key distance (see the Distance function). By default, or
with the key option, the function returns matrix with the Tanimoto similarity
distance (0. all bits are the same, 1. no bits in common), while with the simple option the
second chemical key is considered as a sub-fragment and the distance becomes 0. (identity) if the

230 make

sub-fragment is present in the first bit-mask.
Examples:

 read mol s_icmhome+"ex_mol.mol"
 S_key = Sarray()
 for i = 1, Nof(a_*.)
 set obj a_$i.
 build hydrogen
 set type mmff
 convert
 smil = Smiles(a_)
 make key smil
 S_key = S_key // s_out
 delete a_
 endfor
 S_key

make map

A family of commands producing maps. It includes:

make map cell♦
make map potential♦
make map factor♦

make map cell

make map cell R_6cellParameters I_3NofSteps [R_6box | I_6box] ["zxy"] [as]
[name=s_mapName]
create an electron density distribution for atom selection as_ (all atoms of the current object by
default) on a three-dimensional grid. See also make map potential for a rough electron
density map. The electron density is calculated from the cartesian coordinates of the selected
atoms using a 2-Gaussian approximation. If the l_xrUseHydrogen logical is set to no ,
hydrogen atoms are ignored. The following parameters are taken into account:

the shape of the Gaussian is influenced by the individual atomic b-factors (see set
bfactor).

♦

addBfactor is added to individual atomic B-factors♦

R_6cellParameters is a real array containing { a b c alpha beta gamma } parameters. Optional
R_6box or I_6box arrays define the corner of the map box (closest to the origin) and its sizes ({ x1
y1 z1 dx dy dz } or { nx ny nz dnx dny dnz }, respectively). The whole cell is taken by default.
Examples:

 read object s_icmhome+"crn"
 make map cell {5. 5. 5. 90. 90. 90.} 0.5 a_//ca,c,n

make map factor : calculate electron density map from structure
factors

make map factor [T_factor] [m_map]
calculate an electron density distribution on a three-dimensional grid from a structure factor
table of the Miller indices, reflection amplitudes and phases. Requires that the map is created
before with the make map command. If optional arguments are not given the current map
and/or current factor will be used. A new empty map can be created from an empty
selection by the

 make map a_!*

parameters # see the make map cell command.

make map potential: grid energies, converting crystallographic
electron density maps

make 231

make map potential [simple|occupancy]
[s_terms | name=s_mapname] [as] {[R_6box]
[r_gridCellSize] | cell=map } [
l_ecep=no|yes]
create a property map for the as_ selection. This
command is used for low-resolution surface
generation or to make grid potential maps for fast
docking. The optional arguments are the following:

s_terms : a smooth Gaussian atom density
map is generated by default, otherwise the
grid energy maps specified by the 2-letter
terms are calculated, e.g.
gc,gh,gs,ge,gp). The names of the
generated maps are standard and can not
be changed.

♦

as_ selection : All atoms of the current
object are taken by default.

♦

r_gridCellSize : by default is 0.5 A for
small objects, the default increases with
the size of the object. We do not
recommend to use values over 7 A for
very large objects.

♦

R_6box : default it is a box around the
selected atoms plus 3A margins. The box
defines coordinates of the two opposite
corners of a box (see also the Box
function).

♦

Option cell = map replaces the box and
the grid size and uses the parameters from
the map instead. This option also allows
one to use an oblique cell.

♦

flag l_ecep = no this option affects the
"gb" hb-donor field calculation (see
below). It allows one to project the field
from the donors (i.e. D-H) and for the
hbond acceptors further away from the
donor atom along D-H bond vector to map
out a realistic location for a heavy atom
acceptor.

♦

The default map (with no terms provided) will
return an electron density map. It supports the
occupancy argument as well.

Each individual term (say, "gp") may result in
creation of one or several (up to seven) different
grid maps. These are the maps created under
different terms:

"gh" : m_gh (grid for hydrogen probe)♦
"gc" : m_gc (grid for a standard heavy
atom probe, say C,N,O), m_gl (grid for
large atoms, like metals and halogens)

♦

"ge" : m_ge (grid for electrostatic
potential)

♦

"ge" with Generalized Born (
electroMethod = 5): m_ge

♦

"gb" : m_gb (grid for the hydrogen
bonding potential). Combines donor and
acceptor fields. l_ecep variable affects
the donor field.

♦

"gp" : up to seven grids named as m_g1,
m_g2, m_g3, m_g4, m_g5, m_g6, m_g7

♦

m_atoms contoured at 0.3 exact level.
The 0.5 level is closer to the van der Waals
surface.

default (no terms specified): atomic density map m_atoms ; if contoured, m_atoms
generates a smooth Gaussian envelope around a molecule (see Figures)

♦

232 make

simple : option to enforce a single m_gc map instead of the default pair of maps:
m_gc and m_gl.

♦

occupancy : option to attenuate the map intensity by the atom occupancy.

 build string "his arg"
 display cpk
 make map potential Box(a_ 3.)

wire surface
 make grob m_atoms 0.3 exact # contours near vw-radius.
 display g_atoms

solid surface
 make grob m_atoms solid 0.5 exact
 display g_atoms smooth

♦

term "el", map m_el : Coulomb electrostatic grid, contributions truncated at +-100.
kcal/mol.

 build string "se his arg"
 make map potential "el" Box(a_/1,2/* , 3.)
 display a_
 display map m_el {1 2 3}
 make grob m_el exact # contouring at 0. potential
 display g_el
 set occupancy a_/arg/!ca,c,n,o,cb 0.3
 make map potential simple occupancy "gc" Box(a_/1,2/* , 3.)
enforce a single map with attenuated side chain

♦

term "gh" : van der Waals grid for a hydrogen probe, grid potential is truncated from
above according to the GRID.maxVw parameter;

♦

term "gc", map m_gc : van der Waals grid for a carbon probe; grid potential is truncated
from above according to the GRID.maxVw parameter; By default, terms "gc" will
generate two maps: m_gc and m_gl , the van der Waals map for large atoms with van
der Waals radius larger than 1.8A. To enforce pushing all non-hydrogen atoms to a single
m_gc map, use the simple option.

♦

term "ge", map m_ge : electrostatic grid; grid potential is truncated from above and
below according to the GRID.maxEl and GRID.minEl parameters;

♦

term "gb", map m_gb : hydrogen bonding grid;♦
term "sf", map m_ga : surface accessibility grid. This map is not an independent term,
but allows one to correctly calculate atomic accessible areas if a part of the system is
presented by the grid potentials. If a map named m_ga is present it will be automatically
taken into account in energy calculations of the "sf" term.

♦

Fine-tuning the maps Sometimes you want the van der Waals grids, "gh" and "gc", generated
from the whole receptor, while the "ge" or "gb" grids generated only from a small region of the
receptor. In this case you can run the command two times with different source-atom selection.
Example:

 read object s_icmhome+"crn"
 make map potential "gh,gc" a_1 Box(a_1)
 make map potential "gb,ge,gs" a_1/15:18,33:46 Box(a_1)
 write m_ge m_gc m_ge # write three maps at once

A different method is to use the Bracket(m, R_6box) function which sets everything beyond
the box to zero. Noted that the in the above method only the selected residues make contribution.
In the following method all residues make contribution, and then the resultant map is truncated in
space. Example:

 rename m_ge m_ge1 # Compare with the map generated in previous example
 make map potential "gh,gc,gb,ge,gs" a_1 Box(a_1)
 m_ge = Bracket(m_ge, Box(a_1/15:18,33:46)) # redefine m_ge
 display m_ge
 display m_ge1

See also: make map potential m_electronDensity to generate a rectangular grid
from an oblique crystallographic density map.

make 233

make molcart

make molcart table T name=s_dbtable [make_options] [connection_options]

Imports data from ICM table T_ into database table s_dbtable.

make molcart table s_filename [mol | smiles | separator [header]]
name=s_dbtable [make_options] [connection_options]

Imports data from the s_filename file into database table s_dbtable. The file format may be
guessed from the s_filename or specified explicitly. Supported formats are:

mol for SDF♦
smiles for SMILES♦
separator for CSV♦

For CSV files the header directive tells to treat the first row in the file as column names

Connection may be specified by connection_options .

Other options (make_options) available:

append : append to an existing database table (as oppposed to overwriting it)♦
column= S_column_specs : allows one to specify requested columns and some
other properties of them in a special format.

unique◊
fulltext◊

◊

♦

make molcart table input=<[s_connectionID;][s_db.]s_sourceTable>
name=<[s_db].s_targetTable> [append] column=S_column_specs connection_options

Copies data from one molcart table to another.

input : string which contains source table table name (from which data will be copied).
Optionally you may add connection ID and database name.

♦

name : string which contains target table and database (optionally) names.♦
append : append to an exiting table. If table does not exist it will be created.♦
column : sarray with column names to be copied. By default overlapping subset of
column names between two tables will be used.

♦

Example:

add column t Chemical({"CCC","CCO"}) # create a local table
make molcart table t name="test.t" # copy it to molcart
make molcart table input="test.t" name="test.tt" # make another copy
make molcart table input="test.t" name="test.tt" append # append the same table again
print Nof("test.t" sql), Nof("test.tt" sql) Nof("test.tt" molcart unique)

See also: molcart, write molcart.

SAR analysis

make molsar {T_chemicalTable|X_chemicalArray} X_scaffold [auto] [append]
[name=s_ResultTable>]

Performs R-group decomposition using X_scaffold. This command is similar to split
group command. The only difference is that single table will be generates. For each R-group in
the X_scaffold a column will be created.

With append option the original compound will be added to the result table.

With auto option no explicit R-group specification is needed. The command will automatically
find attachment positions and create appropriate columns. Columns which are invariant (no
changes in substituent) will be excluded.

Example:

group table t Chemical({ "C1NC(C(C1O)O)CO","C1NC(C(C1O)C)CO" })
make molsar t Chemical("C(NCC1)C1") auto name="tsar1"
make molsar t Chemical("C(NC(C1)[R1])C1[R2]") auto name="tsar2"

234 make

See also: split group , split-groupenumerate-library , make reaction , Replace
chemical , Find chemical

split molsar: generate SAR table from the result of `make-molsar

split molsar {T_chemRgroupTable|R1_col R2_col} [R_propColumn1 R_propColumn2 ...]
[name=s_sarTable] [color=R_] [rainbow=s_rainbow]

generates one or more 2D SAR analysis tables from the input R-group columns.

group table t Chemical({ "C1NC(C(C1O)O)CO","C1NC(C(C1O)C)CO" })
make molsar t Chemical("C(NC(C1)[R1])C1[R2]") auto name="tsar2" append
split molsar tsar2.R1 tsar2.R2

make pca

make pca [append] T [i_nPC=3] [r_tradeoff=0.010000] [options]

Options:

name= s_prefixForPCcolumnNames, e.g. make pca t name="pc" will create
columns pc1 and pc2

♦

select= I_rows , allows one to specify rows should be analyzed that e.g.
1,2,5,8,12. Other rows will get zero values.

♦

column= S_columnNames , allows one to specify columns for the PCA analysis. The
column names can be specified in any of these formats: "colName" , ".colname" ,
"tabname.colname", e.g. {"A","B","C"} . See also Name (e.g. Name(t number)
for the names of all numerical columns .

♦

make peptide bond

make peptide bond as_C as_N_or_S
form the peptide bond between two selected C- and N- atoms, or the thioester bond between C-
and S- atoms. The bonds may be formed between the terminal amino- and carboxy- groups (a_/1/n
and the last c), as well as between such amino acid side-chains groups as a_/lys/nz and
a_/asp,asn/cd, a_/glu,gln/cg. The energy restraints for form the additional chemical bond will be
calculated under the "ss" term and can be viewed with show drestraint See also: delete
peptide bond How to modify an ICM-object .
Example:

 build string "se nh3+ gly gly gly gly gly his" # notice: NO C-term group
 display
 make peptide bond a_/nh3*/n a_/his/c # form a cyclic peptide
display drestraint
 minimize "ss"
 minimize "vw,14,hb,el,to,ss"

form thioester bond

 build string "se cys ala ala ala glu"
 display
 make peptide bond a_/1/sg a_/5/cd
 minimize "ss" # term "ss" is responsible for the extra drestraints

Note that this method uses distance constraints (as it is done for the disulfide bonds) to support the
closure. Another method:

make bond simple
set term "bb,bs,af"

will use the force field to keep the peptide closed.

Generate an attractive grid map from crystallographic electron
density map for refinement

make map potential map_Xray [as] [R_6box] [r_gridCellSize] [smooth] [name=s]

make 235

converting crystallographic density map which is not suitable for energy manipulations to a grid
potential m_xr . The source map starts at {0.,0.,0.}, can be oblique with uneven spacing. However
the resulting map is always equally spaced rectangular map in any area of space. This grid
potential can be used in real space refinement. Find the description of the arguments in make
map potential command.

Option smooth uses the Gaussian smoothing of the values.

loadEDS "1atp" 0. # downloads electron density map m_1atp
read pdb "1atp"
make map potential m_1atp a_atp # map around around ATP
m_gc = - m_xr # a possible use. Also possible with "gp"
set terms "gc" # add gc germ for minimization

See also:

make map cell♦

make plot: Adding a scatter plot or a histogram to a table

make plot T s_plotArgs [name=s_plotname [append]|[output=s_fileName [size={w,h}]]

This command creates a plot belonging to table T . Each table can contain multiple plots and all
the plots belong to the following member of the table header: T.plot

The s_plotArgs string contains the arguments, e.g.

 x="Random(1.,10.,100)"
 add column t $x $x Shuffle(Sarray(50,"red")//Sarray(50,"blue")) $x $x name={"x","y","C","S","sz"}
 make plot t "x=A;y=B;color=C;shape=D;size=E;" # or
 make plot t "x=A;y=B;color=C;;element=rectangle;center=1.3,2.4;radii=1.3,2.0;color=red"
 add header t Matrix(10)
 make plot t "matrix=A;rainbow=white/yellow/green"

The syntax of the s_descr string containing other arguments of the make plot command is the
following. plot_element[;;plot_element2;;...][general_plot_properties]

Plot elements.Each double-semicolon separated section is either a plot/histogram or a geometrical
element.

XY scatter plot, contains both x= and y= plus optional color= , rainbow= and
size= .

♦

histogram data plot, contains either x= OR y= , not both of them, plus♦
element=rectangle;center=x,y;radii=rx,ry♦
element=rectangle;x1=x1;y1=y1;x2=x2;y2=y2;♦
element=ellipse;center=x,y;radii=rx,ry♦
element=polygon;xy=x1,y1,x2,y2,..♦

Scatter plot arguments
x=columnName # must be present♦
y=columnName # must be present♦
color=color_or_columnName;♦
(requires color=) rainbow=color1[/color2...][,from:to] (e.g. make plot t
"x=A;y=B;color=C;rainbow=red/white/blue,100:150,linear/0:0/0.7:0.5/1.:1"

♦

size=number or column;♦
shape=shapeName_or_columnName. The shape names are the following:
shape=Circle|DTriangle|Diamond|Cross|DiagCross|UTriangle|LTriangle|RTriangle|Pentagon|Hexagon
(the specification is case insensitive, e.g. shape=diagcross)

♦

labels=columnName (or label=)♦
regression=linear|logarithmic|no♦
style=dots|connected|splines|bars|triangles♦
xerr=columnName # X axis confidence interval♦
yerr=columnName # Y axis confidence interval♦
tooltip=col1,col2,... Comma separated list of column names for balloon
popup when user move mouse over the curve dot.

♦

Histogram plot arguments

The syntax of the columnName can refer to one or multiple columns as follows:
columnName|{columnName[,columnName...]}

236 make

A distinct columnName can be further split by another columnName as such:
columnName[:columnName]

x=columnName or y=columnName # must be present♦
pinwheel=color[/color...] (e.g. make plot t
"x={A,B,C,D};pinwheel=red/blue"

♦

step=bin size (e.g. make plot t "x=A;step=20"♦
binWidth=relativeBinWidth[0.,1.] # (saved on exit)♦

Examples:

group table t Random(1. 10. 40) Random(1. 10. 40) Iarray(20,0)//Iarray(10,1)//Iarray(10,2)
make plot t "x={A,B}"
make plot t "x=A:C"

General Properties (all are optional)

title=plot_title♦
xTitle=X-axis label♦
yTitle=Y-axis label♦
grid=yes|no # grid lines♦
axes=no|yes # additional X=0 and Y=0 axes♦
xStep=x # x tick marks♦
yStep=y # y tick marks♦
xRange=fr:to # shows only the plot in the specified range♦
yRange=fr:to # shows only the plot in the specified range♦
scale=scale # is updated upon interactive rescaling♦

Properties of the geometrical elements (rectangle,ellipse and polygon)

color=color. The color is a name or a hexadecimal rgb string, e.g. color=red or
color=#ff0000

♦

rotate=angle_degrees (e.g. rotate=45 means 45 deg. counter-clockwise)♦
fillStyle=BDiagPattern|SolidPattern|HorPattern|VerPattern|CrossPattern|BDiagPattern|FDiagPattern|DiagCrossPattern♦
label=My label # each semicolon or backslash inside the label needs a preceding
backslash, i.e. \;, \\ .

♦

labelPos=center|left|right|top|bottom♦
Example

group table t {300. 200. 500.} "Volume" {390. 230. 630.} "Area" {5 3 1} "i"
x = "x=Volume;y=Area;color=i;size=8;;title=Volumes and areas;;"
y = "element=rectangle;x1=150;y1=200;x2=550;y2=550;color=blue;fillStyle=BDiagPattern;label=Drugs;labelPos=center"
make plot t x+y

Option output writes the plot as an image into file name provided. File extension defines the image
type. (Most popular extensions: png,jpg,pdf,eps) With output option you may additionally specify
the size of the output image.

Example:

 add column t Random(100,0.,1.) Random(100,0.,1.) Random(100,0.,1.)
 make plot t "x=A;y=B;color=C;size=6;style=dots;;" output="aaa.png" size = {500,500}
 unix display aaa.png # display the plot using Linux 'display' program

Visualizing a matrix

Element matrix=matrixName with additional arguments:

depth=♦
legend=♦
pos=♦
step=♦
rainbow=♦

General properties are also applicable after two semi-colons: (xTitle , yTitle , title)
Example:

read pdb "1crn"
m = Matrix(a_/A a_/A) # residue contact matrix
add header t m name='m'
make plot t "matrix=m;rainbow=white/yellow/green;depth=-1;legend=m;;xTitle=I;yTitle=J;title=Contacts of Crambin"

See also:

make 237

delete plot # to delete plots♦

make reaction : applying reaction to the products

make reaction reaction_R1R2 chem_R1 chem_R2 .. [name=s_table | output=s_file]
[filter=s_expression] [all | only] [keep]

Takes one chemical reaction (the first element of a reaction array) and applies it to the reactant
arrays. All reactants suitable for this reaction will be combined to generate a chemical table .
The reaction drawing need to refer to replacement groups as R1 , R2 , for example:

Parray("[R1]C(=O)O.N[R2]>>[R1]C(=O)N[R2]")

Note that here the dot . separates the reactants and the >> indicate the reaction. Example:

m1 = Parray({ "C(C(=O)O)(=C(C=C1)N)C=C1SC#N" "C(=CC(=C(O)C1)C=CC=1)(C(=S)N)C(=O)O"\
 "N(=C(S1)N)C(C1=CC(C=C1)=CC=C1C(=O)O)=O" "C(C(=O)O)(C(=CC1)N)=CC=1N=C=S" })
m2 = Parray({ "C(C(=O)O)(=C(C=C1)N)C=C1SC#N" "C(=CC(=C(O)C1)C=CC=1)(C(=S)N)C(=O)O"\
 "N(=C(S1)N)C(C1=CC(C=C1)=CC=C1C(=O)O)=O" "C(C(=O)O)(C(=CC1)N)=CC=1N=C=S" })
make reaction Parray("[R1]C(=O)O.N[R2]>>[R1]C(=O)N[R2]") m1 m2

keep options preserves SMARTS search attributes in the result

all and only options allows one to handle multiple functional group mapping. The possibilities
are:

default mode : skip compounds with multiple functional group matches♦
only option : take a first mapping♦
all : enumerate all possible mappings♦

You can apply a filter expression to the output of the reaction. The following functions can be
used in the filter:

MolWeight,Nof_Molecules,Nof_Chirals,Nof_RotB,Nof_HBA,Nof_HBD,Nof_Atoms,Nof_Frags,DrugLikeness,MolLogP,Volume,MolPSA,MoldHf,MolLogS

Example:

make reaction Parray("[R1]C(=O)O.N[R2]>>[R1]C(=O)N[R2]") m1 m2 filter="MolWeight<400 & MolLogP<6"

You can also apply condidtion to the matched functional groups. R1,R2,... Example:

react = Parray("[R1]C(C(=O)[R2])=O>>C1C(=C(C=CC=1)[R2])[R1]")
rct1 = Chemical({"CC(C(C)=O)=O", "CC(C(c1ccccc1)=O)=O"})
make reaction react rct1 filter = "R1==R2"
make reaction react rct1 filter = "R1!=R2"

Another example (provided as an example file):

read binary s_icmhome + "example_reaction1.icb"
make reaction r_han_pyr.rxn[1] name=Name("T_react", unique) reactant1.mol,reactant2.mol

The output. The output is generates as a table if the total number of products is less than 40,000.
For larger sets the command will automatically switch to the file mode.

Option name = s_table allows one to change the default name of the output table.♦
Option output = s_file forces the file output and suppressed the table creation.♦

The output chemical table has the product column as well as a column for each of the R-groups.

Dynamic filtering of the output by applying a filter expression.The filter= s_expression
option allows one to apply a filter during the library generation. The filter expression is a
double-quoted string with the following structure: "Function1 relation value & or | Function2
relation value & or | .. "

Example:

filter = "MolLogP<5. & Nof_Frags('C(O)=O')<1"

The list of functions is expanding. The current list of the functions is the following:

Function Name Description Example

238 make

MolWeight MolWeight < 650

Nof_Molecules the number of individual
molecules,including ions and salts Nof_Molecules==1

Nof_Chirals the total number of racemic and chiral
centers Nof_Chirals==0

Nof_RotB rotatable bonds
Nof_HBA hydrogen bonding acceptors
Nof_HBD hydrogen bonding donors
Nof_Atoms the total number of non-hydrogen atoms
Nof_Frags (
s_smart) counts the number of fragments Nof_Frags('[S,P](=O)=O')==1

DrugLikeness a number around 0 DrugLikeness > 0
MolLogP log P prediction
Volume 3D molecule volume prediction
MolPSA polar surface area
MoldHf heats of formation
MolLogS solubility
see Predict for a detailed description of some of the functions.

Splitting the library by the scaffold into the replacement group arrays.A library can be also
reduced back to the scaffold and replacement groups using the split group scaffold library
command. E.g. split group scaffld.mol combilib.mol

See also: enumerate library , Split chemical , Replace chemical .

make sequences from alignment

make sequence ali_range
take a vertical block from an alignment and convert it into a separate alignment with independent
truncated sequences.

read alignment s_icmhome+"sh3"
make sequence sh3[20:50]

See also:

delete sequence compress - removes sequences not used in alignments♦
Align♦

make sequence: extract from pdb or icm structure

make sequence ms [name={s_name | S_names}] [resolution]
creates sequences (or, more strictly speaking, ICM-shell objects of the 'sequence' type) of residues
composing selected molecules ms_ . One-letter equivalents of full residue names are specified in
the icm.res library. Option resolution adds the X-ray resolution value multiplied by 10 to
the name (e.g. 2ins_a25 for resolution of 2.5A) or 'No' for NMR and theoretical structures. The
group sequence command will automatically prefer a sequence from structure with better
resolution. The resolution is not appended if option name= is specified.
The make sequence command also extracts both the secondary structure and the site
information.
See also: read pdb sequence
Examples:

 read pdb "2ins"
 make sequence a_2ins.a,b # two seqs 2ins_a and 2ins_b created
 make sequence a_2ins.a,b resolution # resolution*10 added to the name
 make sequence a_1.1 name="aa" # sequence named: aa
 make sequence a_2ins.a,b name={"aa","bb"} # seqs named: aa and bb

make 239

make tree

make tree table [tree_type] [tree_name] [options]

this command builds a hierarchical data tree of the table rows and stores in the table header. as a
tree.cluster parray. A simple example is given below:

read table "t.tab" name="t"
make tree t

Defining the tree construction type.

The main modes are the following:

a complete tree requiring N2 comparisons. It is preferable for tables smaller than a
thousand records. For larger tables both performance and memory requirements become
prohibitive. This mode will be used by default for up to 2000 rows. To force this mode
use keyword full, i, or the method name.

♦

a K-means clustering requiring N*K comparisons. To activate this mode the number of
clusters i_Kclusters needs to be specified. This method is both much faster and does not
require a pre-existing NxN distance matrix.

♦

For a small number of rows (N under two thousands) ICM performs data clustering based on N by
N comparison between the table rows. This method can be enforced for larger tables with the
full option (e.g. make tree t full) or using the distance = s_distMatrixName . In the
latter case the matrix needs to be appended to the table header:

read table "t.tab" name="t" # N rows
make tree t full # all distances between rows are calculated
or
read matrix "dist.mat" name="dm" # N x N matrix
group table t append header dm
make tree t distance = "dm" # uses external distance matrix for clustering

The type (tree_type) of the cluster tree construction algorithm can also be explicitly defined. This
type defines how two distances from two neighboring branches are replaced with one distance. By
default the "upgma" method is used.

"upgma" (the default) unweighted pair group method using averages, i.e. each record
has the same weight, and therefore, the distance to each branch is weighted by the branch
size: d12=(N1*d1+N2*d2)/(N1+N2) .

♦

"single" or "min" single linkage, if two branches with d1 and d2 are merged, the
distance is replaced with the minimal distance: d12=Min(d1,d2) .

♦

"complete" or "max" , e.g. d12=Max(d1,d2) .♦
"wpgma" : average linkage tree, each branch has equal weight regardless of the number
of members: d12=0.5*(d1+d2) .

♦

If the number of rows N is large, ICM performs the K-means clustering by default. The K-means
method can also be enforced if the number of clusters is provided as an explicit integer argument,
e.g.

make tree t 100 # enforces K-means with 100 seed clusters.

This method avoids a full comparison by creating K seeds and comparing all other records with
the seeds. If neither full argument, nor the type string, nor the number of seeds for the K-means
clustering is specified, the method of construction will be determined automatically on the basis of
the number of rows.

Defining the distance measure.

The distances between rows can be (1) provided externally in the table header (option
distance=s_matrixName, see below) (2) calculated dynamically as Tanimoto distances
between chemical fingerprints for chemical tables; (3) calculated dynamically as weighted
cartesian distances (options column= S_listOfColumns and heavy= R_listOfColumnWeights).
The tree can further be used to assign a cluster number to each table row at a certain distance
threshold (the separator= and the split= options).

For common tables, by default all numerical tables are used with the same weight. For chemical
tables, by default only the chemical array is used for distance calculations. However, option all
will enforce concurrent use of the chemical distances and all numerical columns. Options

240 make

column= and heavy= give a specific selection of columns and their respective weight.

all add all numerical columns to the chemical information in distance calculation♦
column= S_listOfColumns numerical column used for clustering♦
distance= s_distMatrixNameFromTableHeader . The matching distance matrix must
be already attached to the table with the group table table header matrix
s_distMatrixFromTableHeaderName . This only belongs to the full tree mode.

♦

exact suppressed auto-normalization fo columns in calculating cartesian distances
during clustering

♦

heavy= R_distColumnWeights numerical column weights corresponding to the
column= column names

♦

label= s_labelFormat (e.g. label= "%COMPOUND_NAME")♦
matrix add the newly formed distance matrix to the header of the table (the default
name is "dimt").This only belongs to the full tree mode.

♦

name= s_treeName defines the name of the tab associated with this tree (the same table
can have several associated trees)

♦

select= I_rowNumbers (e.g. select=Count(10,30) this option allows one to
create a tree from a subset of rows, e.g. from 10 to 30.

♦

separator= r_threshold_Dist . The minimal distance value at which elements or
clusters are considered to belong to the same group.

♦

sort= s_orderColName additional ordering of the branches by a table column with
preservation of the clusters (sort="A"). It is possible because left and right is
normally undefined. If the s_orderColName is specified, the left and right will be
determined by this column values.

♦

split= s_colname : re-calculate the cluster numbers at a different threshold value
(a.k.a. separator). s_colname is the name of a column in which the new cluster
number is stored, the "splitting" is done according to the separator value. This split
level can be reset with the split tree command, and the column name can be
returned with the Name(table.cluster i_cluster split) function.

♦

The output.

The tree is added/appended to the table.cluster parray.♦
i_out returns the position index in table.cluster .♦
a new column is added to the table with the order number of records in the tree. This
column can be used to sort the table rows in the tree order. The name of this column can
be found with the Name(table.cluster i_cluster index) function.

♦

another column containing the cluster number at the split level is added if the split
argument is used (see above).

♦

Example:

read table mol s_icmhome+"/moledit/Dictionary.sdf"
make tree Dictionary

See also:

delete variable tree_Parray♦
Name (tree_Parray ..)♦
split♦

make tree ali_name [s_epsFile]
reconstruct the evolutionary tree from the specified sequence alignment using the neighbor-joining
method (Saitou and Nei, 1987). Create a PostScript image of this tree which will be
saved in the ali_name.eps file. See also: the align command.
Examples:

 read alignment msf s_icmhome+"azurins" # read alignment
 make tree azurins # draw evolutionary tree

make tree M_squareDistanceMatrix[1:n,1:n] [S_objectNames[1:n]] [s_epsFile]
reconstruct the evolutionary tree for arbitrary objects from the matrix of pairwise distances. The
names of individual objects may be provided in a string array for a nicer PostScript picture. This
command is cool.
See also:

Disgeo function.♦

Examples:

 read matrix s_icmhome+"dist" # read a distance matrix [n,n]

make 241

 make tree dist
 unix gs dist.eps

make tree object

make tree object M_dist_nxn [S_names_n] [name=s_objName] [angle=(90:180)]
[torsion=(0:180)] [simple] [size=r_distScale]

makes a 2D (option simple) or 3D tree and sets an integer field named 'index' with the
index value to each atom (see set field and Field(as s_fieldName))

This example shows how to start from a table and make an active tree (nodes respond to
doubleClick) :

read table mol s_icmhome + "FUNCGROUPS.sdf" name="t"
make tree object Distance(t.mol) name = "tree" # sets "index" field for leaf atoms
set or re-set labels
set label atom a_//c* Sarray(t.NAME_ [Field(a_//c* "index")])
set ball radius and colors
set atom ball a_//c* t.clogP [Field(a_//c* "index")]
color ball a_//c* t.tPSA [Field(a_//c* "index")]
set double click property (e.g: to select an corresponding table row)
set field a_//c* name="doubleClick" "find table t select index=Field($1 'index')"

make unique: reorder atoms in a unique order.

Example:

read mol s_icmhome+"ex_mol"
make unique

build hydrogen
set type mmff
convert
Smiles(a_) # unique smiles string

minimize

minimize [vs] [i_mncalls] [s_terms] [selftether=as] [as_1 [as_2]] \n\

minimize cartesian|mmff [type] [charge] .. \n\

minimize stack [selftether] .. \n\

minimize tether [disulfide] .. \n\

minimize locally the sum of currently active, or specified, terms of the energy/penalty function
with respect to variables specified by vs_, or all the free variables, if variable selection is skipped.
Optional arguments:

stack : If option stack is specified, the procedure extracts each stack conformation,
minimizes it and replace the stack conformation with the optimized ones. The stack can be
generated with the montecarlo procedure, manually created with the store conf command,
or read from a stack file. This command allows one to refine your set of alternative
conformations all at once.
i_mncalls : defines the maximal number of iterations. The minimization procedure can terminate
earlier if the gradient becomes lower than the tolGrad parameter. If i_mncalls is not provided,
the default parameter mncalls defines the maximal number of function evaluations during the
minimization.
vs_ : variable selection If selection of variables vs_ selection is specified, the object
will be refixed but the initial fixation will be restored after minimization.
s_termString : redefines the set of terms used in the minimization dynamically (e.g. minimize
"tz"). You may check the active terms with the show terms command, or change them
before the minimization with the set terms ".." command. By the way, the active terms can
be shown as a part of your command line prompt if you add the %e specification to

242 make

s_icmPrompt variable (like s_icmPrompt="icm/%o/%e> ").
selftether= as_ : if term "ts" (tether to self) is active, you can select a subset of atoms to be
tethered

atom pair filter: By default all the atoms and all the atom pairs within distance thresholds
vwCutoff and hbCutoff are involved in the calculation. However, two explicit atom
selections [as_1 [as_2]] may impose a mask on atom pairs involved in the calculation of the
pairwise energy or penalty terms. The default for the skipped as_1 is all the atoms. If only the
as_1 is specified, the as_2 is assumed to be all atoms. Using atom selections is dangerous and is
not recommended since there are many combinations which do not make sense and give
unpredictable results.
the algorithm: the minimizeMethod preference. The type of algorithm (conjugate gradient,
quasi Newton, or automatic switching between the two) is defined by the minimizeMethod
preference. The progress bar will show you the progress of the procedure. If
minimizeMethod="auto", the progress bar of the minimization procedure will show the 'C'
character in a row of dots and colons when the quasi-Newton method switches to the conjugate
gradient method.
Dots show progression of the minimization procedure, while colons mark recalculations of
neighbor lists. The lists are updated if at least one of the atoms deviates from its previous position
by more than 1.5 A. Both basic methods use the analytical derivatives of the terms with respect to
free internal variables.
the exit criteria, and interaction lists. The procedure is terminated upon any of these conditions
become true:

mncalls : the maximal number of function evaluations (`mncalls) is reached.♦
tolGrad : if the gradient falls below the tolGrad parameter.♦
tolFunc : if all of 6 consecutive steps do not improve the function beyond the
tolFunc parameter.

♦

minNumGrad condition : this is a condition when the numerical gradient evaluated from
the energy function values differs too much from analytical gradient. It is usually the case
when the minimum is essentially reached, but the atoms bumped into each other and the
slope is steep (R^12). Naturally, if the function has a strong non-harmonic behavior (e.g.
a packed protein) and the numerical gradient does not match the analytical one. This is
not necessarily bad, just means that you reached a packed state. If you rerun the
minimizer, it may go in a different direction and may improve the function a little more.

♦

Suppressing updates of the interaction lists upon atom movements during the minimization.
Sometimes during the course of minimization the interaction lists are recalculated. When some
atoms fall out or in the vwCutoff sphere , the value of the gradient and even the energy function
can jump. For that reason do not be surprised that the exit gradient differs from the one reported in
the previous step output. To influence the lists you have two main mechanisms:

suppress list updates all together with l_updateLists = no . In this case, if you need
to recompute the lists, use the delete list command.

1.

make the updates less frequence by increasing the listUpdateThreshold
parameter.

2.

Example:

read object s_icmhome+"crn"
l_updateLists= no
minimize
show energy # still uses the same lists
delete list
show energy # makes new lists

l_updateLists= yes
listUpdateThreshold=2.
minimize

the output l_showMinSteps flag and i_out : The actual number of function evaluations
during minimization is saved in the i_out variable. The l_showMinSteps flag allows one to
see every iteration of the minimization procedure. To speed up the procedure you may switch off
the l_minRedraw flag to suppress redrawing of the molecule for each new conformation.

The minimizer also returns a rarray R_out with the following values:

R_out[1] the return code as follows:
0 successful completion,◊
1 mncalls expired◊

♦

minimize 243

2 tolGrad is reached◊
3 tolFunc is reached◊
4 tolXdiffOK◊
5 minBadGrad◊
6 minimization was interrupted◊
7 the minimizer is lost in high energy values◊
8 whatever you do, it goes uphill◊
9 unknown failure◊

R_out[2] the number of function calls spent on the minimization run♦
R_out[3] the norm of the gradient (rmsd) upon completion♦

Examples:

 build IcmSequence("HHAS;TW") # create object from "def.se" sequence file
 minimize v_//xi* # do not touch the backbone torsions
 minimize # use all variables
 minimize 500 # run longer until number of calls is 500

minimize cartesian: full conformational optimization

minimize cartesian [stack] [type] [charge] [i_mncalls] [s_termString]
[selftether=as_for_ts_term]
minimize the mmff energy for a fully flexible molecule in the space of atomic cartesian
coordinates. Before running this command please make sure that the atomic types and charges are
set and the mmff libraries are loaded.
The i_mncalls and s_termString have the same meaning as in the previous command. Options:

stack : if option stack is specified, the procedure extracts each stack conformation,
minimizes it and stores back to the stack.

♦

type : if option type is specified the set type mmff command is executed and
mmff atoms are assigned.

♦

charge : if option charge is specified the set charge mmff command is
executed and mmff partial charges are assigned

♦

i_mncalls : redefines the maximal number of minimization iterations (mncalls)♦
s_termString : allows one to dynamically redefine the default energy terms.♦
selftether= as_for_ts_term : if term "ts" (tether to self) is active, you can select
a subset of atoms to be tethered

♦

Example:

 build string "se nter his cooh"
 display
 set term "ts" # tether to the initial set of coordinates
 minimize cartesian type charge selftether=a_//ca,c,n

The drop and tolGrad minimization parameters will still apply.

minimize loop after build model

minimize loop i_loopNumber
to use this command you must run the build model command first. The build model
command may not be able to find a perfectly matching loop. Two sorts of problems may appear:
the imperfections of the loop attachments and the clashes of the loop to the body of the model.
The minimize loop command optimizes the covalent geometry at the junctions and the
clashes through an interactive procedure which maintains the loop closure.
The energy function used by the command is not as detailed as the full atom energy. It is advisable
to perform a regularization (e.g. regul a_) and full atom refinement.
To save all the graphical frames during this minimization set the autoSavePeriod variable to
the special value of 99 . In this case png image files named f_x_y.png , where x is the loop
number and y is the frame number, will be saved in the current working directory.

244 minimize

minimize stack: minimize each stack conformation

minimize stack [s_terms] [mncalls]
execute these steps:

load each stack conformation1.
locally minimize it2.
store each conformation back to the stack3.

As a result, both the geometries and the energies are updated with the optimized ones. Example:

read stack "a"
minimize stack 400

One can achieve the same result with a shell script like this:

read stack "a"
for i=1,Nof(conf)
 load conf i
 minimize 400
 store conf i
endfor

minimize tether: threading a model with idealized geometry
through a pdb-structure

minimize tether [vs]
regularization procedure. It creates a conformation (i.e. determines free variables) that minimizes
distances between atoms and their tethering points. If initial model was built from standard
amino-acids with idealized covalent geometry , this procedure will create a model with standard
bonds and angles which fits the best to the target set of atom coordinates. The tethers may be
imposed by the set tether command. An integer variable minTetherWindow defines the
maximal number of preceding torsions which are locally minimized to best-fit the pdb-model.
Optional variable selection vs_ allows one to perform fitting only for the selected fragment of the
model. This may be convenient if you want to re-fit only a local fragment. Variable r_out
contains the RMS deviation between the template and the model.

Assigning ring conformation from a template

To assign ring conformation from a template one can use the minimize tether command.
The chemical equivalences can be found and tethers imposed with the find molecule
sstructure all tether command. The following example illustrates the principle.

read object "template.ob" name="template" # contains ring template
build smiles "C1CCCCC1" # some ring
find molecule sstructure all tether a_template. a_target. # make sure tethers exist
set object a_target.
unfix V_//r*,f*
minimize tether
minimize cartesian "mmff,ts" selftether=a_//!h*
display a_template,target. center

menu

a tool for making clickable strings in the graphics window.
menu [i_string1 i_string2 ...]
this command declares the listed string labels as active and returns the chosen string number in
i_out . If no arguments are specified, only the last string will be "clickable". See also
_demo_main file.
Examples:

 while(yes)
 display string "Menu"
 display string "Fish" -0.7, 0.6 yellow # 2
 display string "Pork" -0.7, 0.5 yellow # 3
 display string "Pasta" -0.7, 0.4 yellow # 4
 display string "Quit" -0.7, 0.3 yellow # 5
 menu 2 3 4 5
 choice=i_out

minimize 245

 delete label
 if (choice == 2) then
 display "Good choice.\n Our fish is the best.\nClick here"
 menu
 delete label
 elseif(choice == 3) then
 display "Good choice.\n Our pork is the best.\nClick here"
 menu
 delete label
 elseif(choice == 4) then
 display "Good choice.\n Our pasta is the best.\nClick here"
 menu
 delete label
 elseif(choice == 5) then
 quit
 endif
 endwhile

modify

modify chemical structure of a molecule by replacing one part with a specified group or "residue"
from icm.res or user residue library. Prerequisites:

modify works only for ICM objects. convert your object to ICM type if necessary♦
modify deletes the atoms which need to be replaced, so you do not need to delete them
explicitly

♦

modify atom with a library group
modify as_exitAtom s_graft_branch
replace the branch starting from the specified atom by another library substituent. Suitable for
standard biochemical modifications, such as glycosylation, phosphorylation, etc. (Note that to
myristoylate N-terminus you need to use "myr" as N-terminal residue, i.e. build string "se
myr ala ala coo-").
Examples:

 LIBRARY.res = LIBRARY.res // "usr" # Use usr.res in s_icmhome in addition to icm.res
 read library residue # Re-Read the library with additional residues
 read object s_icmhome+"crn"
 display a_/8:13
 color red a_/11 # serine
 # O-glycosylation ("bnag", "bgal", "bglc", "bman" "aman" "afuc")
 # hint type Table(residue) to see available sugars
 modify a_crn.m/11/og "bnag" # beta-D-N-acetylglucosaminide
 # Or
 build string "se ser thr tyr asp lys his"
 modify a_/ser/og "po4" # Phosphorylation
 modify a_/thr/og1 "po4"
 modify a_/tyr/oh "po4"
 modify a_/asp/od2 "po4"
 modify a_/lys/hz2 "po4"
 modify a_/his/hd1 "po4"

See also: LIBRARY.res

modify: single or multiple residue mutations modify rs s_NewResidueName

replace selected residue(s) rs_ by another residue s_NewResidueName. The backbone
conformation is not changed, unless the new residue is "pro" and the phi angle is outside
[-90.,-30.] range.
You can replace amino acids (the usual list of three letter codes), as well as nucleotides: "ra"
"rg" "rc" "ru" for RNA and "da" "dg" "dc" "dt" for DNA.

Examples:

Peptides and proteins

 read object s_icmhome+"crn"
 modify a_/15,18 "his" # substitute residue 15 and 18 with histidines
 modify a_/thr "val" # substitute all alanines with valines

DNA or RNA

246 menu

 read pdb "4tna"
 convert
 modify a_/66 "dg" # substitute nucleotide 66 by Uracyl

Modifying the 1st residue in a polypeptide

The first residues has an unusual N-terminus therefore there is a special trick to mutate it to
another residue. Essentially the grafting principle (see below) needs to be used. Example in which
we are modifying 1st residue of the first object:

build string "HWT" name="x"; align number a_/* 0 # our main object
#
build string "ACDEFGHIKLMNPQRSTVWY" name="allres" # the source of replacement groups
modify a_1./his/cb a_allres./arg/cb # modifies the side chain only

modify by grafting parts of objects modify as_atom1 as_atom2
replace a fragment of the molecular tree in an ICM-object starting from a specified single atom
as_atom1 (e.g. a_/15/cg) by a subtree starting from another single atom as_atom2. This subtree is
simply copied and not altered in any way. It is recommended to perform molecular building
operation interactively and with your molecule displayed in the graphics window. Type modify
and Ctrl-click the atom starting the branch to be replaced and then the atom starting the
branch to be grafted. It does not matter where you take the modification group from. It may be the
same molecule, a group in another object, etc. You may want to load a residue containing the
group of interest directly from the icm.res residue library by doing.
Examples:

 show residue types # find out what residues are available
 build string "se myr" # create a new object with myristoyl group.

After the modification you can remove objects (such as "myr" in the above example) used for
construction. Be careful if modifying atoms within ring systems; the results may not always be
obvious unless you know how the ICM-tree is constructed (you'll be kindly warned anyway).
However, the whole ring can be modified or grafted without any difficulty.
Examples:

 build string IcmSequence("MIPEAY") # build a molecule
 display # display it to click two atoms and watch

 modify a_/1/ce a_/1/ha # replace methyl group of Met-1 by a hydrogen
 modify a_/2/hd13 a_/2/cg2 # methylate hd13 hydrogen of Ile
 modify a_/3/hg1 a_/6/oh # turn proline into hydroxyproline

See also: chemical modification of chemical arrays

Circular permutation of x,y,z coordinates and cell
parameters

modify rotate [os_nonICM] [i_n_perm(1)] [only]

performs one or two (if i_n_perm is 2) circular permutation of Cartesian coordinates of atoms and
unit cell parameters a,b,c and alpha,beta,gamma parameters of the unit cell.
Option only suppresses the cell parameter permutation.and only does x,y,z. This command has
been developed to fix problems with incorrect (nonstandard) definitions for C121 space group.
Normally the second angle (beta) is supposed to be non-90 (is the case for 6000 PDBs with C121
groups), while in the following list

 7acn 8acn 1aco 1ami 1amj 1b0j 1b0k 1fgh 1gra 1grb 1gre 4gr1 1grf 4grt 1grg 5grt 1grh 2grt 1grt 3grs
 3grt 1lh1 1lh2 1lh3 1lh5 1lh6 1lh7 2lh1 2lh2 2lh3 2lh5 2lh6 2lh7 1nis 1nit

the third angle (gamma) is non-90.

Example:

read pdb "1gra"
findSymNeighbors a_ 7. no 2 yes yes # there is a problem with symm generated objects

modify 247

#
delete all
read pdb "1gra"
modify rotate
findSymNeighbors a_ 7. no 2 yes yes # problem solved

Chemical modifications.

find and replace a chemical pattern, normalize/standardize a chemical, delete salts The following
types of chemical modifications can be performed on an array of chemicals:

modify chem_array s_from s_to♦
modify chem_array delete salts♦
modify chem_array auto♦
modify chem_array s_frag1 s_frag2♦

Chemical Find and Replace

modify chemarray s_find_smart s_replacement_smart [exact] [index= I_indices]

find a chemical pattern and performs a global replace to s_replacement_smart for all chemicals in
an array. The replacement can be done only if both the find and replace patterns contain the same
marks R1,R2.. A connecting atom in the pattern can be either an undefined atom, e.g. [R1] or a
defined atom, e.g. [C;R1]These marks are used to find corresponding atoms in the replacement
pattern.

Hints for the Chemical Editor: use the following shortkeys:

to mark atoms as R1 point your cursor at the connection atom and press 1♦
to retain the identity of the attachment atom, (e.g. [C;R1]) use Ctrl-1 ..♦
to undo the R1 mark, label it as N,C,or O; press Ctrl-0 for [C;R1] .♦

E.g:

read table mol s_icmhome+"/moledit/Dictionary.sdf"
modify Dictionary.mol "[R1]CC(=O)O" "[R1]CC(=O)OC"

Option exact modifies atoms in place and requires that the number of atoms is preserved.

Charge or uncharge functional groups in compounds

modify chemarray s_find_smart s_replacement_smart [exact] [index= I_indices]

searches for a chemical group and replaces it by a group with a different charge. Add index=
I_idx if you want to apply the operation to a selection.

Carboxylic_Acids

modify chem "CC(=O)[O;D1]" "CC(=O)[O-]" exact # to charge

modify chem "CC(=O)[O-;D1]" "CC(=O)[O]" exact # to uncharge

Primary_Aliphatic_Amines

modify chem "[C;^3][N;D1]" "C[N+]" exact # to charge

modify chem "[C;^3][N+;D1]" "C[N]" exact # to uncharge

Secondary_Aliphatic_Amines

modify chem "[C;^3][N;D2][C;^3]" "C[N+]C" exact # to charge

modify chem "[C;^3][N+;D2][C;^3]" "C[N]C" exact # to uncharge

Tertiary_Aliphatic_Amines

248 Circular permutation of x,y,z coordinates and cellparameters

modify chem "[C;^3][N;D3]([C;^3])[C;^3]" "C[N+](C)C" exact # to charge

modify chem "[C;^3][N+;D3]([C;^3])[C;^3]" "C[N](C)C" exact # to uncharge

Amidinium/Guanidinium

modify chem "[N;D1]C=[N;D1]" "NC=[N+]" exact # to charge

modify chem "[N;D1]C=[N+;D1]" "NC=[N]" exact # to uncharge

#

Chemical Find and Replace

modify chemarray {delete|split} salt[= chemarrayWithSalts [add]] [simple]

Removes salts using dictionary file $ICMHOME/SALTDICT.sdf.

Example:

add column t Chemical("CCC.CCC.O.NN")
modify chemical t.mol delete salt # uses default salt dictionary

New or additional salt patterns can be provided with salt=.

Example:

add column t Chemical("CCC.CCC.O.NN")
modify chemical t.mol delete salt=Chemical({"O","NN"}) # treats both 'NN' and 'O' as salt

with add option both default and used provided dictionary will be used.

split option created two new columns in the original table 'salt_smiles' and 'salt_names' with
dot separated smiles and names for removed salt.

simple option toggles mode which retains only the largest molecule and deletes all smaller
molecules. Example:

c = Parray({"CC=O.O"}) # has an extraowater, O
modify c delete salt
 Info> 1 replacements done
show c
 CC=O

Standard representation of chemical groups

modify chem_array auto

applies a set of chemical normalization rules described in the CHEMNORMRULES.tab in the
$ICMHOME directory . Feel free to add rules to this table or replace it with your own table.
Currently it has the following rules:

"*-[N+](=O)[O-]" "*-N(=O)=O" "Nitro"
"*-N([OH])[OH]" "*-N(=O)=O" "Nitro"
"*-N(=O)[OH]" "*-N(=O)=O" "Nitro" # Sulfonyl
"S(=O)([OH])(-*)(-*)" "S(=O)(=O)(-*)(-*)" "Sulfonyl" # Azide
"*-[N-]-[N+]#N" "*-N=[N+]=[N-]" "Azide" # Diazo
"[C-]-[N+]#N" "C=[N+]=[N-]" "Diazo"

The asterisk marks "any atom". Note that if the pattern does not contain connection labels [R1],
or [C;R1] , the atoms will not be considered as terminanted. A more general syntax is described
in the chemical find and replace command.

See also:

file CHEMNORMRULES.tab in the ICM home directory♦

Chemical modifications. 249

Update database table from ICM table

modify molcart T [all] [column=S_columns] [table=s_table_name] [
connection_options]

Modifies entries in a database table based on changes made in an ICM table. The load
molcart, find molcart and query molcart create ICM tables containing subsets of
database tables. In most cases the database table has an integer primary key (ID) column, with
unique values for each row. The primary keys may be used to mark certain rows in the ICM table
to request update or deletion of the corresponding entries in the database. ICM GUI provides tools
to mark rows.

The all option tells the command to treat all rows as marked for update. Only a subset of the
ICM table columns may be updated in the database by specifying S_columns.

The connection may be specified using connection_options . Database table is specified
Otherwise connection and table information may be obtained from the input table header as in the
load molcart command.

See also: molcart.

montecarlo

a generic command to sample conformational space of a
molecule with the ICM global optimization procedure.

montecarlo [OPTIONS] [vs_MC [vs_minimize]] [
local rs_loop]
runs Monte Carlo simulation for specified variables vs_MC,
with local minimization with respect to the vs_minimize
variables following after each random move.

Each iteration of the procedure consists of
a random move of one of 4 types;

change one internal variable by a random
value (e.g., montecarlo v_//x*)

◊

change a group of angles described as a
vrestraint according to its probability
distribution (e.g. set vrestraint a_/* ;
montecarlo v_//*)

◊

change the six positional variables (e.g.
montecarlo v_2//?vt*) defining position of
a molecule in space (the so called
pseudo-Brownian move).

◊

change the loop conformation (e.g.

 set vrestraint a_/16:24
 montecarlo v_/16:24 local a_/16:24

◊

1.

local energy minimization;2.
calculation of the complete energy potentially
including surface and advanced electrostatics terms
(REBEL or MIMEL);

3.

acceptance or rejection of this iteration based on the
energy and the temperature.

4.

Three possibilities for variable selections arguments:

250 Chemical modifications.

no variable selections: both vs_MC and vs_minimize will be set to all free variables.
Some vs_MC variables, such as torsions rotating methyl groups, NH2 groups , will be
automatically filtered out, since it is enough to just locally minimize them.

♦

one variable selection: the specified selection will be considered as the vs_MC ,
vs_minimize will be the same vs_MC.

♦

two variable selections: the first one is vs_MC selection, the second one is vs_minimize.
Important: if two selections are explicitly specified, only vs_MC & vs_minimize will be
set free. It means that during the montecarlo procedure the object will be fixed differently
than before. After the command, the status of variables will be returned as they were
before the montecarlo procedure. There are two basic possibilities: unfix on the fly or
unfix first and then run montecarlo:

 montecarlo vs_MC vs_minimize # unfix on the fly
OR
 unfix only vs_minimize # prepare fixation (vs_MC is a subset of vs_minimize)
 montecarlo vs_MC # now one selection suffices and
 # the object set of free variables is not changed

♦

OPTIONS: append
appends to the existing conformational stack (overwrites by default).
chiral
temporarily activates the l_racemicMC variable

tautomer

toggles tautomer sampling. (`build-tautomer needs to be called before)

fast :
rapid side-chain optimization. This option allows one to accelerate the calculation by minimizing
only a subset of the strained variables (as opposed to all minimization variables) after each step.
The strain is established on the basis of the norm of the energy gradient after a random move. The
strained variables are temporarily unfixed and this set of variables may be different every time.
This option needs the selectMinGrad parameter to be set to about 1.5 (a threshold for the
derivative norm). If this value is too low too many variables will be free and the procedure will be
comparable with the default (non-fast) mode, if the parameter is too high the procedure may not be
able to find the low energy conformations because the environment will not respond to the
changes properly. Example:

 build string "se ala his trp glu"
 selectMinGrad=1.5
 set vrestraint a_/*
 montecarlo fast v_//x*

This mode is useful for side chain optimization in homology modeling.

bfactor :
you can use the bfactor option to sample 'hot' parts of structure with higher probabilities. The
relative frequencies are taken from the b-factors of the atoms belonging to the mc-variables.
Example:

 build string "se ala his trp glu" # default b-factor=20
 set bfactor a_/2 1000. # make 2nd his hot
 montecarlo bfactor

To preserve the old bfactors, save them before the simulation and restore after. E.g.

 b_old = Bfactor(a_//*) # save
 ..
 set bfactor a_/10:20 200.
 montecarlo bfactor
 ..
 set bfactor a_//* b_old # restore

local
local [dash] [a_/residueRange1,residueRange2...]
(this option is specified after the main variable selections [vs_MC [vs_minimize]]) option
local makes local deformation type movement for specified regions (e.g. two loops
a_/15:22,41:55). Sub-option dash chooses angles for random deformation symmetrically with
respect to the loop center. Note, that to avoid movements of the flanking regions around the loop,
you need to set tethers for those regions. The local deformation only applies to the initial random

montecarlo 251

move, but the subsequence local energy minimization may move the flaking areas (in particular to
the C-terminus side) away from their correct positions. The simplest way to set the tethers for the
flanking residues (40:45 in the example below) is the following:

copy a_ tether # create a copy of your current object
 # and tether all atoms the original positions
delete tether a_//h* | a_/40:45
set terms "tz" # add "tz" to the list of terms
montecarlo v_/40:45 local a_/40:45

mute
suppresses the text output about each random move

output
shortens the output by printing out only the steps with the DY (down/yes) outcome. The steps in
which any of the simulation limits is reached are also shown. This option may considerably
shorten log files of very long simulations.

r_exitEnergy real argument determines if you want your procedure to exit upon achievement of
equal or lower energy value . For example, if you know energy of the minimum, you may want to
stop the search when this value is achieved. E.g.

 build string IcmSequence("AHWEND") # hexapeptide
 set vrestraint a_/* # BPMC-probability zones
 montecarlo 10. # stop after energy of 10. is reached

two atom selections: montecarlo .. as_1 as_2
(this option is NOT recommended for beginners) Atom selection arguments [as_select1 [
as_select2]] impose a filter on atom pairs considered in the terms of internal energy like
"vw,el,hb,sf". There are three possibilities:

no selections - the whole object (all atoms) is considered (the default)♦
as_select - interactions of the specified atoms with ALL atoms in the object.♦
as_select1 as_select2 - interactions between two selections. For example, a_dom1
a_dom1 would consider only the internal energy of the domain dom1.

♦

reverse
this option makes a more intelligent random move in singlechain or a multichain molecule. By
default if an angle is randomly changed near the beginning of a molecule, the second part of this
chain moves. With the reverse the random move can occur in such a way that a part of the
chain above a randomly chosen angle will stay the same, while the chain below the angle will
move. Actually, the parts will be compared by molecular mass and the heavier part will be more
likely to stay where it is than the lighter part. The probability that a part stays static is proportional
to the number of atoms of this part. It is important that the virtual variables (v_//?vt* are not
fixed).
This option is very useful in docking, since the receptor is static and the moving molecule should
try to preserve the majority of current interactions. Also, the reverse option helps if one
simulates the N-terminus of a multi-chain protein, or a docking of a peptide to a protein. Example:

 read pdb "1aya" # read a complex
 delete a_!1,2 # keep only SH2 domain and a peptide
 convert # make an ICM object with hydrogen
 set vrestraint a_/* # set prob. zones
 montecarlo reverse v_2 v_2 # re-dock the peptide

If you move the 1st molecule, do not forget to unfix the fvt1 variables of all other molecules,
e.g.

 ..
 unfix only v_1 | v_*//fvt1
 montecarlo reverse

If you always want to keep the C-terminus static and move the N-terminus, use the
superimpose option (see below).

252 montecarlo

store

option store means that at the end of the simulation the stack is stored in the current object
(equivalent to the store stack object command). This allows to extract it later without
reading it from a file.

superimpose as_3atoms_per_molecule
superimposes new generated conformations after every move. Usually if you change backbone
torsion at the N-terminus, the whole molecule moves. This option allows one to generate
conformational changes at the N-terminal part of a peptide while its C-terminus occupies the same
position in space. After each random move the first 3 atoms selected in molecule(s) will be
superimposed on their initial position and the 6 positional variables (v_//?vt*) will be updated
accordingly. The setup:

unselect the virtual variables from the MC selection (v_//!?vt*)1.
specify three or more atoms beyond the N-term. of interest for superposition2.
add virtual variables to the minimization selection (it is usually the default) to allow
positional adjustments during minimization (the movements of C-terminus are
suppressed only in the MC move, not in the following minimization).

3.

if minimization is used (mncalls > 1), make a copy of the molecule and tether the
C-terminus to it.

4.

trajectory
records all accepted conformations sequentially in a binary *.trj file. Later one can read
trajectory, display trajectory, and operate with individual frames, e.g.

for i=1,Nof(frames)
 load conf i # to extract a frame
 display skin white center
 write image png "f"+i
endfor

Example:

 mncalls = 1 # move N-term residues a_/1:5 and while keeping
 # the rest in the same position
 montecarlo v_//!?vt* superimpose a_/6/c,ca,o
 # virtual variables should be available for minimization
 montecarlo v_/1:3/!omg,?vt* superimpose a_/6/c,ca,o
Now a more realistic example
 build string "se ala his trp ala ala ala ala"
 display
 display residue label
 mncalls = 200
 copy a_1. "original"
 set tether a_/5:7 a_original./5:7
 set terms "tz"
 set vrestraint a_/*
 mncallsMC=100000
 montecarlo v_/1:4/!omg,?vt* superimpose a_/5:7/ca

The following ICM-shell variables and commands are important for the procedure.

mncallsMC,♦
mncalls,♦
temperature,♦
tempCycle = {tempMax,tempMin,tempPeriod}, e.g. {1200.,600.,100000.} for a cyclic
temperature schedule

♦

mcBell to make rs-zones narrower or wider than in icm.res file♦
mcJump♦
mcShake - the average amplitude of the pseudo-Brownian move♦
mcStep - an amplitude of the unbiased step♦
l_bpmc - if no, makes simple random steps (one angle by a random value)♦
l_writeStartObjMC - if yes, write the starting object with its fixation and geometry
to a file.

♦

mnvisits three limits and three actions follow♦
visitsAction ,♦
mnhighEnergy ,♦

montecarlo 253

highEnergyAction ,♦
mnreject ,♦
rejectAction ,♦
vicinity ,♦
compare .♦

EXPLANATION OF THE OUTPUT (below are 3 example lines with numbered fields):

1 2 3 4 5 6 7 8 9 10 11 12 13 14
DY Visi 600 16 gln xi3 70 -98 94 -322.04 -324.56 35 4.87 51559
__ __ 600 32 ile BPMC ipt ipt ipt -324.56 -290.80 18 65.72 51577
_Y Visi 600 16 gln BPMC qmm qmt qmm -324.56 -323.93 41 3.78 51618

DY = Down Yes, i.e. energy has decreased after change and new conf. is accepted __ =
up no , i.e. energy has increased and new conf. is not accepted _Y = up Yes, i.e. energy
has increased, but new conf. is accepted

1.

stack operation code indicates the outcome of comparison of the current conformation
with the stack.

Impr : the conformation is close to one in the stack and has a better energy.
Visited and improved

◊

New : the conformation added as a new stack conformation◊
Sbst : not found, full stack, the worst is substituted for the current◊
Visi : visited and not improved◊
Vlm : visited and not improved, repetition limit mnvisits is achieved◊
High : not found, worse than the worst stack structure◊
__ : NO in calling routine (has nothing to do with stack)◊
RLim : NO limit of sequential Rejections is reached (has nothing to do with
stack)

◊

VLim : NO Vlm (number of visits > mnvisits)◊
HLim : NO High. mnHighEnergy limit is reached.◊

2.

current temperature in Kelvin;3.
number of selected residue4.
selected residue name5.
name of randomly selected angle or BPMC to indicate the biased probability move6.
internal coordinate value or name of the multidimensional zone before random change;7.
internal coordinate value or name of the multidimensional zone after the random change
but before minimization;

8.

internal coordinate value or name of the multidimensional zone after the minimization;9.
energy before the random change;10.
energy after the random change and subsequent minimization;11.
number of function calls made during minimization;12.
gradient RMS deviation (normal completion is with low or zero gradient);13.
total number of function calls in the simulation.14.

The logic of stack operations is the following. There are three possible events for each slot of a
stack:

new slot creation1.
energy improvement of the current slot conformational family2.
replacement of the looser conformational family by a better energy conformation3.

The starting conformation is placed to the first slot, if the stack is empty. At every simulation
iteration, distances (either coordinate RMSD or angular RMSD, as defined by the compare
command) are calculated between the current conformation and all slots. If any of the distances is
less than the vicinity parameter, then the energies are compared and if the current
conformation has the better energy, the stack conformation is replaced by the current one,
otherwise the visit counter of the slot is incremented. If no similar structures are found, the
conformation is appended to the stack, i.e. a new slot is created. If the stack is full, i.e. number of
slots reached mnconf parameter, then the worst-energy structure will be substituted by the
current, provided the latter has lower energy. Otherwise, no action is taken and
number_of_high_energy_conformation counter is incremented (see also mnhighEnergy).
Explanation of the last section of the output. Example:

 Info> 4 stack conformations saved to def.cnf [3 compressed]
 Info> nSteps= 74, nTrials= 80, AcceptRatio= 0.92500,
 Info> BestEnergy= -6.01, Step 37; nCalls= 2009, eachMcVar = 1.88

the diverse low-energy stack conformations are saved in a very compact file. The stack
can be later loaded with the read stack, load conf commands.

♦

nSteps - the number of accepted moves♦
nTrials - the number of generated random moves♦
AcceptRatio - nStep/nTrials♦

254 montecarlo

BestEnergy - the best energy found by the stochastic optimizer.♦
nCalls - the total number of energy evaluations (each random move includes multiple
energy evaluation performed by the local minimizer)

♦

eachMcVar - the average number of attempts to change each variable (if this number is
less than one, the sampling may be insufficient, also read about convergence).

♦

move

Move objects, molecules between objects.
move ms_molecule: change tree topology

move ms_moleculeToReconnect as_terminalAtom
changes the topology of the basic ICM-tree by reconnecting the first virtual bond of a
specified molecule to a given atom. This allows you to move two molecules together as one rigid
body. By default, all the molecules are connected to the origin [0,0,0] through virtual bonds. The
molecule can be connected only to the terminal atom, usually a hydrogen. The molecule can not
be connected to itself (naturally, do not even try it). This operation is defined only for ICM
molecular objects.
Examples:

 build IcmSequence("AAFF;DEG") # two molecules connected by virtual bonds
 display virtual # to the origin
 move a_2 a_1/3/hz # graft the second molecule to a hydrogen
 # on another molecule
 # now the second molecule will move together
 # with the a_1/3/hz branch
 # if you change v_1//?vt* variables

move : move multiple molecules between objects or merge two
objects

move ms_MoleculesToMove os_destination

move os_ObjectToMove os_destination
move one, several or all selected molecules (ms_MoleculesToMove or os_ObjectToMove) to the
specified object os_destination. When all the molecules are moved from the source object, the
empty object is deleted. The ms_MoleculesToMove molecule or object are appended to the end of
the os_destination object and their virtual torsion tvt1 becomes virtual phase fvt1.
This command is used to create one object from several components.
Examples:

 read object s_icmhome+"crn" # 1st object
 build string "se ala his leu" # 2nd object
 move a_2. a_1. # take the 2nd obj and merge
 # it with the 1st one
 # Or
 read pdb "1sis"
 read pdb "2eti"
 set object a_1.
 move a_2. a_1. # two PDB structures became one
 # ICM molecular object
 display virtual

move several molecules into any molecule, auto-bond several
molecules

move ms_molecules_to_merge [s_new_mol_name]

move only ms_molecules_to_merge

different molecules in a PDB object can be merged into a single molecule and correct
intermolecular bonds can be formed with this command. This command also automatically bonds
the closest atoms (if distance< 0.6(R1+R2)) between the molecules being merged into a single

move 255

molecules. Helpful in dealing with PDBs with disconnected carbohydrates. Options:

If new name is not provided, the name is taken from the first molecule.♦
only - do not merge, just make bonds between the closest atoms♦

Example;

read pdb "1nxc" # three parts of hetero-mol need to be merged
move a_2,3,4 "glycan" # they are merged and bonded now.
move a_1,2 only # form a bond with the protein

move a table row or parray element

move table[i_row] [i_newPos]

moves a row, e.g. t[2] to a new position. If the position is not specified the row is moved to the
end.

move parray[i_pos] [i_newPos]

moves a parray element to a different position.

Example:

group table t {1 2 3}
move t[2] 1

move table column

move table.column [i_newPos]

moves the column to a new position. If the position is not specified the column is moved to the
last position. Example:

add column t {1 2 3} {3 2 1}
move t.B 1

See also: add column, add column function

move alignment sequence

move ali seq [i_new_seq_pos]

move the sequence in an alignment to a new position. If the position is not specified, the sequence
is moved to the last position. Example:

read alignment s_icmhome+"sh3"
move sh3 Eps8 1
move sh3 Fyn

See also: Resorting alignment

pause

pause [i_n_seconds | r_seconds] [s_message]
suspends execution for specified number of seconds. A fraction of a second can also be specified,
e.g. pause 0.01 If no argument is specified, the program will wait until RETURN is pressed.
Examples:

 pause 0.1 # hundred milliseconds
 pause 5 "You have 5 secs" # pause for 5 seconds

 read object s_icmhome+"dcLoop.ob" # How to analyze the conformational stack
 read stack s_icmhome+"dcLoop.cnf"
 display a_//ca,c,n # display backbone
 for i=1,Nof(conf) # for all stack conformation

256 move

 load conf i # load and redisplay each of them
 pause "Press Return. N"+i # gives you time to inspect the structure
 endfor # go on to the next conformation

Debugging shell scripts
The pause command also can set the program into a debugger mode in which you will be
prompted to confirm each command by pressing RETURN. In the debugger mode the
l_commands flag will be automatically set to yes and restored upon quitting. This is how to do
it:

To start the debugger mode, add to your script: pause "START DEBUGGER"♦
To quit the debugger mode, type or add to your script: pause "QUIT DEBUGGER"♦

plot

create a PostScript file with a plot (for a built-in interactive plot use make plot, add output=
s_file.pdf to save a pdf to a file).
plot { R_Xdata R_Ydata | M_XmultpleYdata } [S_PointLabels] [S_PlotAxisTitles] [{
R_4Tics | R_8Tics }] [s_epsFileName] [options]

Simple input: Two compulsory arguments R_Xdata R_Ydata contain the X and Y
coordinates. Both arrays may also be integer arrays.

♦

Matrix input: allows you to specify several data sets. The M_XmultpleYdata matrix may
contain either X,Y1,Y2,..Yn columns or just Y1,Y2,..Yn columns if option number is
used. Matrix M[2,n] or M[n,2] is equivalent to the simple input R_Xdata R_Ydata (Note
that function Histogram() returns such a matrix). Additional convenience: by default,
different data sets will be shown in different colors and a panel with series/color
correspondence will appear at the position specified by the PLOT.seriesLabels
preference (choose "none" to suppress the panel). To avoid ambiguity do not use explicit
S_PointLabels with the matrix input. Example:

 # table t . It has columnds t.A and t.B add column t Random(1. 5. 20) name="A"
add column t Random(1. 5. 20) name="B"

now let us make a matrix with one column containing the order number
m=Transpose(Matrix(Rarray(Count(Nof(t))))) # 1. to 20. column in a matrix
m=m//Transpose(t.A) # add column A from t
m=m//Transpose(t.B)
add your functions of X here

plot m display
or
plot m square display

♦

Axis and Tics: 8-array R_Tics[1:8] contains information about X and Y axis: { Xfrom,
Xto, XmajorTics, XminorTics, Yfrom, Yto, YmajorTics, YminorTics }. If only 4 numbers
are provided, they are interpreted as { Xfrom, Xto, XmajorTics, XminorTics } while the Y
axis tic marks are determined automatically. By default, if this argument is missing, the
tic marks for both axes are calculated automatically. Example:

 x={1. 3. 4. 7. 11. 18.}
 y=Sqrt(x)
 plot x y {0.,30.,2.,4.} # only X-axis marks are defined
 plot x y {0.,30.,2.,4.,0.,10.,1.,5.} # both axes are explicitly defined

♦

Title and legends: string array S_PlotAxesTitles[1:3+NofSeries] contains { "Title", "X
title", "Y title" } in the simplest case. If multiple series are plotted using
M_XmultpleYdata or number M_multpleYdata arguments, each series may be named
with additional components of the array: { "Title", "X title", "Y title","Y1 title","Y2
title",..}.

♦

Plot controls: Optional S_PointLabels has the same number of elements as R_Xdata or
R_Ydata and may contain either string to be displayed at the corresponding X Y point, or
control information about marker type, color and size. The control string must start with
underscore (_). To display both symbols and string labels, duplicate X and Y arrays (e.g.
X//X, Y//Y) and supply the first S_PointLabel section with the symbol information and
the second one with the string label information. Examples of string labels:

 s={"1crn", "2ins", "1gpu", "3kgb","4fbr","6cia"} # text labels: show as is
 s={"_red SQUARE 0.4", "", "", "_green DIAMOND","",""} # control labels
 s={"_line" "" "" "_red line" "" "" "_blue line" "" ""} # control labels

♦

pause 257

The empty string tells the program to inherit all the settings for the previous point.
Individual components of the string label are (i) color, (ii) mark type and (iii) mark size.
Omitted components are not changed. Allowed colors: ICM_colors from icm.clr file
which one can show with show color command. The Color (R) function will return
a string array with suitable for plot color names mapped onto values. Allowed mark
types: line, cross, square, triangle, diamond, circle, star, dstar, bar, dot, SQUARE,
TRIANGLE, DIAMOND, CIRCLE, STAR, DSTAR, BAR. Uppercase words indicate
filled marks.

Options.
append - append the plot to an existing plot file.♦
display - view the created postscript file with an external viewer defined by the
s_psViewer variable.

♦

grid, or grid="x", or grid="y" - draw grid at the major tics for the specified axis.
Default: for both axes ("xy").

♦

exact - data points can reside exactly at a margin.♦
regression - draw linear regression line.♦
frame - draw NO frame around the plot (paradox isn't it? yeaah we are tricky).♦
origin - make origin at (0,0) point.♦
link - enforce 1:1 aspect ratio, equivalent to PLOT.Yratio = 1.0 .♦
comment= S_xyXYtext - this option allows one to draw one line of text along all the four
sides of the plot box. The string array may contain up to four strings {s_x,s_y,s_X,s_Y}:

s_x: lower horizontal string, i.e. comment={"xxxxxxx"}1.
s_y: left vertical string, i.e. comment={"","yyy"}2.
s_X: upper horizontal string, i.e. comment={"","","XXXXXXX"}3.
s_Y: right vertical string, i.e. comment={"x","y","X","YYY"}4.

This option may be used to draw amino acid sequence around a contact plot box or a dot
plot box.

♦

number generates the sequential numbering for X-array if this array is missing and sets
a natural X tic style. In case of matrix input (see above) option number allows one to
omit the X-array.

♦

String variable s_epsFileName with extension .eps defines the name of a PostScript file where
the resulting plot is to be written to. The default of s_epsFileName is "def.eps".
Examples:

 x = Rarray(90,0.,360.) # an array of angles with 4 deg. steps
 plot x Sin(x) display
 plot x//x Sin(x)//Cos(x) display # quick and dirty way to have two data sets.
 # Now let us get rid of the defect
 s = Sarray(2*Nof(x)) # S_PointLabels for both arrays
 s[Nof(x)+1] = "_red line" # restart line for the first point
 # of the second set
 plot x//x Sin(x)//Cos(x) s display # much better

 plot Transpose(x)//Transpose(Sin(x))//Transpose(Cos(x)) display

 read object s_icmhome+"crn"
 crn_m = Sequence(a_/A) # a_/A ignores termini
 plot comment=String(crn_m)+Sstructure(a_/A) number Turn(crn_m) display # try it
 plot comment=String(crn_m)+Sstructure(a_/A) number Turn(crn_m) {"Turn prediction","Res","P"}
 unix gs def.eps # to see it again

See also: make plot , Histogram, plotRama macro in the _macro file, and examples in
the _demo_plot file.

plot area: show matrix values with color

plot area M_XYdata options [S_TitleXY] [{ R_4Tics | R_8Tics }] [s_epsFileName]
plot 2D data from the matrix and mark values by color. Other arguments are the same as in the
plot command. Distribution of colors is controlled by the PLOT.rainbowStyle preference.
By default the minimal and maximal values of matrix M_XYdata are used as extremes for
coloring. Options:

color= R_2MinMax option allows you to enforce specific boundaries represented by
the color range. For example, if you chose the "blue/red" PLOT.rainbowStyle the matrix
value smaller than or equal to the first element of the R_MinMax array will be colored
blue, while the matrix values larger than or equal to the second element of the array will
be colored red, the middle values will be color with intermediate colors. The real array of
boundaries contains two elements.

 PLOT.rainbowStyle = "blue/white/red"

♦

258 plot

 color={1. 3.} # <= 1. are blue; above 3. red
 color={3. 1.} # >= 3. are blue; <= 1. are red
link - enforce square shape (1:1 aspect ratio) of each cell, overrides PLOT.Yratio.♦
comment= S_xyXYtext this option allows one to draw one line of text along all the four
sides of the plot box. The string array may contain up to four strings {s_x,s_y,s_X,s_Y}:

s_x: lower horizontal string, i.e. comment={"xxxxxxx"}1.
s_y: left vertical string, i.e. comment={"","yyy"}2.
s_X: upper horizontal string, i.e. comment={"","","XXXXXXX"}3.
s_Y: right vertical string, i.e. comment={"x","y","X","YYY"}4.

This option may be used to draw amino acid sequence around a contact plot box or a dot
plot box.

♦

transparent= R_2range option allows you to make a certain range of matrix values
invisible. If R_2range[1] < R_2range[2], the specified range will be excluded from the
plot, while the values beyond the range will be shown. If R_2range[1] > R_2range[2],
the specified range will be shown by color, while the values beyond the range will be
excluded. Example:

 transparent={1. 3.} # values WITHIN the range are not shown
 transparent={3. 1.} # values OUTSIDE the range are not shown

♦

Data can also be transformed and clamped with the Trim() function.
Examples:

 read matrix s_icmhome+"def.mat"
 PLOT.rainbowStyle = "blue/white/red"
 plot area def display # min/max = {-3.,17.}
 plot area def color = { 0., 20.} display
 plot area def color={-0.,15.} transparent={-10.,5.} display
 plot area def[1:12,1:10] link display comment={"X","Y axis"}

 N=210
 M=Matrix(N N)
 for i=1,N
 M[i,?]=Sin((Power(i-12.1 2)+Power(Count(N)-12.1 2)))
 endfor
 plot area M link display
 # just a nice test, default boundaries are used

 read pdb "1crn"
 MDIST=Distance(Xyz(a_//ca))
 s=String(Sequence(a_1./A))
 PLOT.rainbowStyle = "blue/rainbow/red"
 # contact map for 1crn, values below 4.8 and
 # above 10. A are not shown
 plot area MDIST area color = {4.5 15.} transparent={10.,4.8} \
 display link grid comment=s//s

See also the make plot associated plot method, for example

m = Matrix(10)
add header t m name="m"
make plot t "matrix=m;rainbow=white/yellow/green"

predict

predict model T_n [M_nxm] [key] [name= s_colName]

command applying a model developed by the learn command.

print

print arg1 arg2 arg3 ...

The arguments may be variables or constants of integer, real, string, logical,
iarray, rarray, sarray, matrix, sequence, or alignment type.
Examples:

 print "no. of atoms=", i_out, "GRAPHICS.wormRadius=", GRAPHICS.wormRadius

plot area: show matrix values with color 259

print bar : showing progress bar from ICM shell

print bar { "." | " Start" | "End\n" } nSteps

Useful in showing progress in a long for loop. Example:

l_commands = no
print bar " Start" 100
for i=1,100
 read pdb "1crn"
 rm a_
 print bar "." 100
endfor
print bar " End\n"

printf

a family of three functions for the formatted print:
printf s_formatString args ... # prints to stdout and s_out♦
sprintf [append] s_formatString args ... # prints to s_out only♦
fprintf [append] s_file s_formatString args ... # write to a file♦

printf s_formatString arg1 arg1 arg2 arg3 ...
formatted print, mostly follows the C-language printf syntax. The arguments may be variables or
constants of only integer, real, string type.
s_formatString may contain

plain characters that are directly reproduced♦
ambiguous characters: \\ - backslash, \" - double quote, %% - percent♦
escape sequences for more tricky characters (\a - bell, \b - backspace, \f - formfeed, \n -
newline, \r - carriage return, \t - horizontal tab, \v - vertical tab) and

♦

conversion specifications for each argument of the printf command. Each specification
starts from % and may be followed by - sign for left adjustment, and precision
specification (e.g. %-5.2f).

%c - unsigned character◊
%s - string◊
%d %D - integer◊
%[-] i1.i2f - float (real) in decimal notation◊
%g %G - real in either f or e style, precision specifies the number of significant
digits.

◊

%e %E - real in [-]d.ddde+dd style◊
%o %O - unsigned octal◊
%u %U - unsigned decimal◊
%x %X - unsigned hexadecimal◊

♦

The output is directed to the screen and is also saved in the s_out string which can be later
written or appended to a file.
Examples:

 printf "Resol. = %4.1f N_ml= %-3d\n", a, n
 write append s_out "log" # append to the log file

See also: sprintf [append] [s_] (prints to the s_out string by default) fprintf
[append] s_file (directly prints to a file).

print image

print image [window= I_xyPixelSizes]
print the current screen image to the printer defined by the s_printCommand ICM string
variable. Use option window= to increase the resolution (however in this case bear in mind that
the lines will get thinner and labels smaller). Be kind to your printer and color the background
white (e.g. Ctrl-E). See also: write image s_printCommand, View (window).
Example:

260 print

 read pdb "4fgf"
 nice "4fgf"
 color background white # or press Ctrl-E
 print image
or
 s_printCommand = "lp -c -ddepartmentalColorPrinter"
 print image window=View(window)*2 # increase resolution two-fold

Run SQL queries

query molcart s_sql_command|S_sql_commands [name=s_tableName] [connection_options]

Performs an SQL query in the connection specified by connection_options . For
SELECT and other queries returning data, this command creates a table. The result table may be
specified by the s_tableName parameter. All SQL types are converted to appropriate ICM types.

Example:

 query molcart "select * from asgsynth where molid=1"

See also: molcart, find molcart, load molcart

quit

quit [s_message1 s_message2 ..]
Terminates ICM session. Note that the message strings can not contain expressions or functions.
Example using two strings:

 HELP = " $P - program to do things"
 if Getarg()!="" quit " unrecognized arguments. " HELP

randomize

a group of commands to modify ICM objects using random numbers.

randomize internal variables in molecules

randomize vs r_angAmplitude
randomly distort current values of specified variables with either specified or default amplitude in
degrees for angles and in Angstroms for bonds. The range is [CurrentValue - r_angAmplitude,
CurrentValue + r_angAmplitude]. Default amplitude is defined by mcJump ICM-shell variable
(30.0).
randomize variables in range
randomize vs r_angMin, r_angMax
assigns random values within specified range to selected variables.
randomize atom positions
randomize as r_amplitude
translates the specified atoms as_ randomly and isotropically according to Gaussian distribution
with the specified sigma.
randomize molecule positions
randomize ms r_amplitude
translates and rotates the specified molecules ms_ randomly and isotropically according to
Gaussian distribution with the specified sigma. We call it a Pseudo-Brownian random move. The
same moves are used in the montecarlo docking protocol.
Examples:

 build string "se ala glu tyr"
 randomize v_//!omg 50. # distort all variables with
 # 50 degrees amplitude

 randomize v_/14:21/phi,PSI -70., -50. # range [-70.,-50.]

 copy a_ "ttt"
 mv a_ttt. a_
 randomize a_2

 randomize a_/tyr/!ca,c,n,o 0.05

print image 261

(Note use of PSI torsion in the last example.)

read

read stuff from a disk file, pipe or string.
ICM offers several ways of reading information in:
read from file

read ... s_fileName [mute] [pattern= regexp]
reading from a file. Just specify the type and from what file. The file name is a string and must be
quoted. Usually, the extension can be omitted if it is standard and is implied by the object type.
Also, in several cases the program will try to find the requested file in a special directory (
s_pdbDir for a PDB file, s_xpdbDir for an xpdb object, etc.), if is not found in the current
one.
Option mute will temporarily switch l_info to no .

Option pattern = regexp will filter out the lines of the text file that match the regular
expression.

Examples:

 read pdb "1crn"
 # s_pdbDir will also be searched.
 # It will also read "1crn.brk.Z"

 # you may specify file extension explicitly
 read iarray "a.a" mute

read binary and read binary list

read binary [name= S_objNames [class1 class2 ..]] [s_fileName] [mute] [
display | only | all] [edit] [list]

read binary pdb s_pdb_code # see also s_xpdbDir
reads icm-portable binary project file. ICM allows one to save multiple ICM-shell objects to a
single compact cross-platform binary file.

Reading everything or just some itemsBy default, ICM reads all objects in the file. If you want
to see the list the objects in this archive, use the list binary command. To read selectively,
use the name option or a list of object classes, e.g.

read binary object alignment name={"a","b"} "a.icb"
only extracts 3D objects, alignments, and variables named a and b

Options:

name= S_objNames|name={"g1","m_gb"}|reads a subset of
objects

mute|read binary mute temporarily switches l_info to
no

display|read binary display displays molecules as they were
saved

only|read binary udisplay ignore display section, only read
undisplay|read binary only same as only

list|read binary list makes a table of content for the
file

edit|read binary all edit s_file| reads password protected
files

read binary list [name = s_outputTableName] s_fileName

creates a table of content for the icm objects stored in a binary file. It the table name is not
specified, T_out table is created. From the GUI interface you can double click on a table row to

262 randomize

download a particular object from the file.

 read binary only # reads the default icm.icb file and suppress display
 read binary "aaa" # reads all objects from aaa.icb
 read binary name={"biotin","DOCK1_rec"} "example_docking"
 read binary "example_docking" display # reads and displays as saved

 read binary list "example_docking" name="ed_toc"
 read binary edit "secretfile.icb" # will be prompted for the password

 s_xpdbDir = "http://ablab.ucsd.edu/xpdb/"
 read binary pdb "1xbb"

read html file

read html [display | auto] s_htmlFile [name= s_newStringName]

read an html file and display its contents in the built-in ICM html-browser. This command also
creates a string variable. Options:

name= s_newStringName : gives the ICM variable a name (the file name root is the
default)

♦

display - create a string variable with the file contents and display the file♦
auto - makes the document pop in txdoc every time you read a project with this string.♦

If a html-document is read to ICM with this command, it can be stored in a single project along
with other objects of the ICM shell.

read html simple s_htmlFile

does not create a shell variable, just displays the file with txdoc .

The HTML documents can contain sections of the icm code (so called icmscript) which are
executed upon clicking. Example:

<!--icmscript name="part1"
read pdb "1crn"
display a_*.
-->
...
click here to execute icm script

See also: help browser .

read from string

read ... input= s_bufferString [name= s_newName]
reading from an ICM string. Replacing file by a string is useful in CGI scripts, because the input
information is easily accessible as an ICM string. Option name= s_newName allows one to
specify a name of the new ICM-shell object. Note that multiline input can be directly pasted or
typed after a triple quote followed by the closing triple quote.
Examples:

 s_mat="1 2\n3 5\n0 6"
 read matrix input=s_mat name="m23" # matrix m23 is created
 s_seq = "> a\nAFSGFASG\n> b\nQRWTERQWTE\n"
 read sequence input=s_seq # read sequences a and b
 show a b
#
using triple quoted multiline input:
 read matrix name='z' input="""
1 2 3
2 3 4
5 6 7
"""

read 263

read through filters: assign action by file extension.

read ... s_compressed_or_encoded_files
of any type directly. The files will be uncompressed on the fly, if the file extension and the
corresponding filtering command are found in the the FILTER table. ICM understands .gz (
gzip), .bz2 (bzip2) and .Z (compress) compression.
Examples:

 read object "aa.ob.gz"
 read pdb "/data/pdb/pdb1crn.ent.Z"

read all

read all s_allFileName
reading from a mixed file containing several ICM-shell objects (including tables) or data
types. Legal types and separators:

#>i integer_name♦
#>r real_name♦
#>s string_name♦
#>l logical_name♦
#>p preference_name♦
#>I iarray_name♦
#>R rarray_name♦
#>S sarray_name♦
#>M matrix_name♦
#>seq sequence_name♦
#>prf profile_name♦
#>ali alignment_name♦
#>m map_name♦
#>g grob_name♦

#>T table_name # the column layout♦
#>col table_name # the column layout♦
#>db table_name # the database layout♦

#> brk # a protein-data-bank file content♦
#> var # internal variables (torsions, angles, bonds) for the current ICM-object♦

Example:

 read all "a.all" # the file is given below

The a.all file may look like this:

#>r lineWidth
 1.00
#>R box4
 0. 0. 1. 1.
#>s tt.h
this is a header string of table tt. The arrays follow.
#>i tt.n
15
#>T tt
#> name bd nlines
icm 1985 160000
bee 1998 100000
inet 2000 80000

Such a file can be created with the
write append icmShellObject file.all
command

264 read

reading records from a large file via index table

read { sequence | mol | mol2 } T_selectedEntries
extract database entries selected via index table expression. A large file with multiple
records (e.g. an .sdf file, an .ml2 file, a .fasta file, etc.) can be indexed with the write
index command and then individual records or groups of records can be read via this index. The
entries can also be extracted into a string array via the Sarray(T_selectedEntries) function.

Example:

 read index "/data/inx/SWISS.inx"
 read sequence SWISS[2:15]
 read sequence SWISS.ID ~ "IL2_*" | SWISS.ID == "ML2_HUMAN"
 # or
 read index "NCI3D"
 read mol2 NCI3D.DE ~ "^benz*"
 sarray_of_ml2s = Sarray(NCI3D[1:10])

See the readMolNames sarray for details on database compound name storage conventions.
Index file contains an integer position of the first character of an entry (ST as in STart), and the
entry length (LE as in LEngth). Accepted types of the database index files are single files with
multiple entries:

#>s Swiss.DIR
/data/swissprot/seq
#>s Swiss.EXT
.dat
#>T Swiss
#>--ID---------ST-------DA------LE-
104K_THEPA 0 906 1094
..

See also:

write index♦
Sarray index♦

read http/ftp

read .. "ftp://ftp.server.com/path/to/file"

reading directly from ftp port.

The ICM can read not only from files directly accessible from your computer but also files from
remote locations via ftp or http.

ICM includes a simple FTP client to simplify access to the databases on the internet. Files names
may be specified as an ftp style URL:
ftp://[user [: password]@] hostname [: port]/ path/ file
If the password portion is omitted, the password will be prompted for. If both the user and
password are omitted, anonymous ftp is used. In all cases passive (PASV) ftp transfers are used. If
port is omitted, standard port (:21) is used.
Example:

 read binary "ftp://hestia.sgc.ox.ac.uk/pub/datapacks/CENTG1_annot_NEW.icb"
 read sarray "ftp://ftp.rcsb.org/pub/pdb/data/structures/divided/pdb/"+\
 "ab/pdb1ab1.ent.Z"
 read sequence "ftp://embl-heidelberg.de/toby/ph.seq"

URL-header may be used in existing mechanism of access to PDB:

 s_pdbDir ="ftp://ftp.rcsb.org/pub/pdb/data/structures/divided/pdb/"
 pdbDirStyle = "ab/pdb1abc.ent.Z"
 read pdb "1crn"

Remote files are stored in your local s_tempDir directory. Do not forget to delete them from
time to time. The system table FTP can be configured to delete temporary files and deal with
firewalls.

read .. "http://www.server.com/path/to/file"

read 265

reading directly from http port.

ICM includes a simple HTTP client to simplify access to the databases on the internet. Files names
may be specified as an http style URL:
http://[user [: password]@] hostname [: port]/ path/ file[(?|
)name1=value1&name2=value2...]

Example:

 read binary "http://hestia.sgc.ox.ac.uk/pub/datapacks/CENTG1_annot_NEW.icb"
 read pdb "http://www.pdb.bnl.gov/pdb-bin/send-pdb?id=1crn"

You may pass arguments to the http URL using POST or GET methods.

For GET method add '?' followed by URL encoded string in 'name=value&name=value'
format. Use String(s_string html) to URL encode parameters Example:

read string "http://www.google.com/search?hl=en&q=molsoft&btnG=Search"
if you query contains spaces or other non alpha-numeric characters you must URL-encode it
read string "http://www.google.com/search?hl=en&q=" + String("molsoft icm") + "&btnG=Search"

♦

POST method differs from GET only by replacing '?' with a single ' ' (space). This
method is widely used when communicating with SOAP services. Example script
allowing to make a spelling suggestion:

url = "http://api.google.com/search/beta2"
HTTP.postContentType = "text/xml"
HTTP.protocolVersion = "1.0"

form SOAP message

create a message with SOAP method and a namespace
req = SoapMessage("doSpellingSuggestion","urn:GoogleSearch")
add method arguments
req = SoapMessage(req, "key","btnHoYxQFHKZvePMa/onfB2tXKBJisej") # get key from google
req = SoapMessage(req, "pharse", "Bretney Spers") # some misspelled pharse

send it to the server and read the resulk
read string url + " " + String(req)

parse result
res = SoapMessage(s_out)

check for errors
if Error(res) != "" then
 print Error(res)
else
 print Value(res)
endif

♦

See also: HTTP.proxy FTP.proxy

read unix

read .. unix unix_command
reading from a unix pipe. (Note that you can read unix shell variables directly with the Getenv(
s_varName)} function).
Examples:

 read unix date
 if(s_out[1:3]=="Sun")print "Go to church"

 read column unix grep "^DY" f1.ou | awk '{print $11, $12}'
 show def

read unix cat

read .. unix cat
reading from a buffer pasted with the mouse is a special case of reading from a unix pipe.
Basically, just mark anything ICM-readable in any window, paste it to your ICM session and press
Ctrl-D. Note that a file name which is usually used to name the ICM-shell object is missing
now, therefore it may be named 'def' (i.e. default), rename it afterwards.
Examples:

266 read

 read alignment unix cat
 cd59n LQCYNCPNP--TADCKTAVNCSSDFDACLITKAG--------LQVYNKCWK
 ly6n LECYQCYGVPFETSCP-SITCPYPDGVCVTQEAAVIVDSQTRKVKNNLCLP
 ^D
 show def
 rename def cd_ly

 read sequence unix cat
> cd59
 LQCYNCPNPTADCKTAVNCSSDFDACLITKAG
 LQVYNKCWKFEHCNFNDVTTRLRENELTYYCCKKDLCNFNEQLEN
 ^D

read unix cat or read string are two equivalent ways to
load text to the s_out string
 read string
 This is the text which will end up
 in you s_out string.
 ^D

read a mixed, read all -type, input and create two ICM-shell variables:
read all unix cat
#>s ss
strrr
#>i aa
234
^D

read alignment

read alignment [fasta | pir | msf] [s_aliFileNameRoot] [name= s_aliName]
read alignment file in a natural, pir or msf formats. Upon reading, all the sequences are created
as separate ICM-shell objects. The alignment is created as a separate object for msf-formatted
files. In the case of other formats the alignment object is created if lengths of all the sequences
together with dashed ("---") insertions are equal to each other.

read color

read color s_clrFile
If you want to have an alternative color file (say, "icmw.clr"), you can reread the colors.
Example:

 read color "icmw"

read comp_matrix

read comp_matrix [s_cmpFileNameRoot]
reads cmp-formatted file (*.cmp) containing one or several residue comparison matrices.

read conf: conformations from file

read conf [i_stackConf] [s_stackFileNameRoot]
reads and sets one specified conformation from the conformational stack file *.cnf. If
i_stackConf is omitted the best energy conformation is extracted. This command will work with
both compressed and uncompressed (old) stack file formats.
See also read stack.

read csd

read csd [s_csdFileNameRoot [s_csdJournalFileName]] [i_NofObjectsLimit [
i_startingObject]]
reads the output of the Cambridge Structural Database (CSD) search utility, namely,
FDAT-formatted file (*.dat) and the optional session journal-file (*.jnl). Information about atomic
coordinates, connectivity, parameters and symmetry of crystallographic cell is taken from the
FDAT file. The journal file contains information about chemical names of compounds. If not

read 267

provided, the REFCODE csd-name is assigned to the compound name of the ICM-object. (See
also Name ([os_ ,] real)). Optional i_NofObjectsLimit and i_startingObject arguments allow
you to extract a subset of several objects from a certain position of a multi-entry file. You can loop
through all the objects by reading the chunks of up to about 1000 objects by doing the following:

 offset = 1
 while(yes) # infinite loop
 read csd "large" 100 offset # read the next 100 objects
 if(Nof(object) == 0) break # exit upon reading all obj.

do whatever you want

 offset = offset + 100
 delete a_*.
 endwhile

The object created is not of the ICM-type, use convert or write library to create an object
or an ICM-library entry, respectively. Note that you can also read compressed CSD files (see
FILTER).
Examples:

 # all objects from ex_csd.dat and ex_csd.jnl
 read csd "ex_csd"
 # only the first obj. ; explicit name for the journal file
 read csd "ex_csd" "ex_csd" 1

To see how to generate all the symmetry-related molecules in the cell, see the transform
command.

read database

read database [field= S_fields] [group [name= s_tableName]] s_databaseFileName
read a text database with strings and numbers and create appropriate arrays. The field names in the
database become names of the arrays upon reading. The list of array names will be stored in
s_out . Option group indicates that a table should be formed (or ICM-shell structure) of the
constituent arrays. This table will be renamed if option name is specified.
You may also group arrays of the database to form a table with a separate command. That will
allow you to sort all the arrays and search all the fields by the Find() function.
Examples:

 read database field ={"NA","RZ"} s_icmhome+"foldbank.db" group name="tt"
 read database field ={"RZ","NA"} s_icmhome+"foldbank.db" group
 show foldbank

ANOTHER EXAMPLE
 read database "LIST.db"
 show database $s_out # you may also list the arrays explicitly
 write database $s_out "out.db"

See also: read column, write database, show database.

read drestraint

read drestraint [only][s_cnFileNameRoot]
read distance restraints (often referred to as cn) from an a .cn file. Do not forget to
read drestraint types first. Option only tells the program to delete previous distance
restraint settings.

read drestraint type

read drestraint type [only] [s_cntFileNameRoot]
read distance restraint types from a *.cnt file. Option only tells the program to
delete all previous distance restraint types settings.

268 read

read factor

read factor [s_factorFileNameRoot]
reads the Xplor-formatted structure factor file. The input is free-field, and each reflection record
may be extended over several lines.
Example:

INDEx 1 2 3 FOBS=9.0 SIGMA=3.3 Phase=50.0 Fom=0.8
INDEx 2 -3 1 FOBS=31.0 SIGMA=2.3 Phase=20.0 Fom=0.3
INDEx 5 6 6 FOBS=44.0 SIGMA=2.0

To read the ICM-formatted structure factor table, just use the read table command. ICM will
recognize the file type.

read gamess from the output file.

read gamess s_gamessOutputFile

reads and parses the output of the gamess program. ICM converts the atomic (Hartree) energy
units into kcal/mole and with some options can upload the minimized conformation.

read grob

read grob s_groFileNameRoot [name=s_grobname]
read graphics object from a file. If the name is not specified, The object name is derived
from the file name. This command supports various import formats:

Simple ICM graphics object format: ".gro"♦
Wavefront OBJ: ".obj"♦
OFF (Object File Format): ".off" , the default♦
Google Earth KMZ: ".kmz"♦
COLLADA: ".dae"♦
3DXML: ".3dxml"♦

Examples:

 read grob s_icmhome+"/icos" # load icosahedron from icos.gro file
 display icos # the name derived from the file name
 read grob s_icmhome+"/cube.gro" name="g"
 display g
 read grob s_icmhome+"/squirrel.kmz"
 display squirrel

See also: write grob .

read iarray

read iarray s_iarrayFileName [name= s_newIarrayName]
read integer array from a file. File format is free.

read index

read index s_indexTableFile [name= s_ixFileName] [database=
s_newDataBaseDirectoryName]
read the index file for quick access to a database. The optional argument allows one to access the
database file at a location different from those specified in the course of indexing with the write
index command.
Examples:

 group table NCBI_ {"ID","DE","SQ"} "fd" \
 header "/data/nr/" "DIR" {"nr"} "FI" "" "EXT"
we created control table t
 write index fasta NBCI_ "/data/nr/NR.inx"
 # make index and save to a file

read 269

 read index "/data/icm/inx/NR.inx"
 # read index
 show NR[2:5]
 # usage of the last optional argument
 # move the data file, keep the index file
 unix mv /data/nr/nr /newdisk/data1/nr/nr
 read index "/data/icm/inx/NR.inx" database="/newdisk/data1/nr/nr"

read library

read library [s_libraryFileNameRoot]

read library [residue | atom | color | drestraint | vrestraint | charge |
energy] [s_libraryFileNameRoot]
reads the ICM library files:

icm.res and user residue libraries. Several residue libraries can be used. The
LIBRARY.res string array defines the residue library files which are loaded into ICM.
For example, to add your library file jack.res to the existing residue libraries, you can
do the following:

LIBRARY.res = LIBRARY.res // "/home/jack/jack.res"
read library

♦

icm.bbt - bond bend angle bending and improper torsion deformation parameters♦
icm.bst - bond stretching parameters♦
icm.cod - atom codes and types♦
icm.tot - torsion angle energy parameters♦
icm.hbt - hydrogen bonding parameters♦
icm.hdt - surface-based hydration parameters♦
icm.cmp - residue comparison matrix(es)♦
icm.cnt - distance restraint types (cn)♦
icm.vwt - van der Waals energy parameters (keyword energy)♦
icm.rst - multidimensional variable restraints zones♦

The default library path is defined by the s_icmhome variable and the name is defined by the
s_lib string ICM-shell variable.
Examples:

 read library # reads all library files according to LIBRARY table
 LIBRARY.res = {"icm","/home/jack/jack.res"}
 read library residue # to re-read only residue libraries
 read library atom "new.cod" # re-read different atom codes
 read library color "new.clr" # different colors
 read library drestraint "new.cnt" # drestraint types
 read library vrestraint "new.rst" # vrestraint types
 read library charge "new.bci" # charge increments

read library mmff

read library mmff [s_libraryFileNameRoot]
reads the following additional library files for the mmff94 force field:

mmff.bbt♦
mmff.bst♦
mmff.tor♦
mmff.tot♦
mmff.vwt♦

To calculate the mmff energy one needs to assign atom types, and charges. The force field
is switched with the ffMethod preference. An example:
Example:

 build string "se nter his cooh"
 read library mmff
 set type mmff
 set charge mmff
 display
 minimize cartesian

270 read

read map

read map [reverse | xplor] [s_mapFileNameRoot] [name= s_mapName]
read ICM-electron-density map file and create an ICM-shell variable of the map type. ICM
understands the following map formats:

CCP4 binary maps♦
Xplor text format♦

If you read an external binary map file in CCP4 format, ICM will automatically recognize the
Endian (the order of bits in numbers) and perform the conversion required. Option *reverse
forcibly changes the Endian for binary maps generated outside ICM under a different operating
system. We can not support many other popular map formats, or sub-types of the CCP4 or Xplor
formats generated by different program. Use the mapman program (Kleywegt, G.J. and Jones,
T.A. (1996). xdlMAPMAN and xdlDATAMAN - programs for reformatting, analysis and
manipulation of biomacromolecular electron-density maps and reflection data sets. Acta Cryst
D52, 826-828) to reformat the map to one of the two supported formats if necessary. Reading
many maps at once
read map [reverse] [s_mapFileNames] [name= s_mapNames]
read multiple files specified in comma-separated string (e.g. "./map/gc,./map/ge") and rename
the maps by matching names from a comma-separated string. Examples:

read map "gc1,ge1,gh1" name="m_gc,m_ge,m_gh"

read map "./gc1,./map/ge1,./gh1" name="m_gc,m_ge,m_gh"

read matrix

read matrix [s_matrixFileNameRoot] [name= s_MName]
read ICM-matrix file and create an ICM-shell variable of the matrix type.

read mol

read mol s_FileNameRoot|X_chemarray
[delete|auto|bond|simple|charge|type|stack] [number= {i_number|I_from_to}]
[name=s_rootName]
read multi-molecule MDL mol -file (a.k.a. SD-file) or directly from a chemical array and
create stripped molecular objects (they need further conversion). The molecules are named
according to the first line of the name section of the mol/sd format. If this line is empty, the root
name is taken from the option name= s_rootName, and the molecules are named like this:
"xx","xx2","xx3","xx4" .. if the s_rootName is "xx" . If none provided the molecules
are named 'm', 'm2', 'm3',..., sequentially. Note that with the name option the first molecule keeps
the name exactly as specified in the name option. If possible readMolNames is utilized.
In the default mode a pattern of single and double bonds is interpreted in order to identify aromatic
systems. Then appropriate bond types are changed to aromatic (hit Ctrl-W to see the effect).
This aromatic system assignment, however, is irreversible. If you write mol after that the new
bond types will be saved.
Set l_readMolArom to no if you do not want to assign aromatic rings upon reading. (and
formal charge and bond symmetrization for CO2, SO2, NO2or3, PO3). To suppress suppress the
symmetrization and consequential charging of CO2, set the l_neutralAcids to yes .
S_out contains all properties: All the property fields specified in the mol file, e.g.

<logp>
2.344
<cas>
234

will be stored in the S_out array (one string for each object). The string can be further split into
fields to extract the values, e.g.

 cas = Trim(Field(S_out,"cas_rn",1,"\n")) # sarray of cas numbers
 logp = Rarray(Field(S_out,"logp",1,"\n")) # rarray of logp values

Do not forget that ICM converts all strings to low-case.
Options:

read 271

exact: enforces the exact mol/sd format. The default reading mode is more tolerant to
common format violations.

♦

auto: automatically assigns compound names, if the name line is missing. The name is
composed of the file name root and the order number of a compound.

♦

hydrogen: automatically adds hydrogens♦
type: automatically assigns MMFF atom types♦
charge: automatically assigns MMFF atom charges according to the types♦
stack: read multiple conformations of into an object stack instead of reading them as
separate objects

♦

Examples:

 read mol "ex_mol.mol" # you may skip the extension
 logP = Rarray(Trim(Field(S_out,"logp",1,"\n"))) # rarray of LogP values
 build hydrogen
 wireStyle="chemistry"
 display a_

Conformational generationThe _confGen script creates a table called conformers. In this table
multiple conformations of the same molecule can be recognized by column MOL_NUM with the
molecular number in the input file. Now the multiple conformation can be read into a molecular
object with a stack like this:

read mol stack (conformers.MOL_NUM == 2).mol # read molecule #2 grouping all conformations into a stack

If you do not need to create molecular objects, but need to create a molecular spreadsheet instead,
use the read table mol command.
See also:

l_readMolArom,♦
l_neutralAcids,♦
read table mol,♦
String # e.g. read mol input=String(t.mol)♦

read mol2

read mol2 [s_FileNameRoot]
read Tripos' Sybyl mol2 -formatted file (extension .ml2) and create stripped molecular objects
(they need further conversion to become ICM-objects).
Set l_readMolArom to no if you do not want to assign aromatic rings upon reading. (and
formal charge and bond symmetrization for CO2, SO2, NO2or3, PO3). To suppress suppress the
symmetrization and consequential charging of the acidic groups like CO2, SO3, PO3 set the
l_neutralAcids to yes . These will work only if the input files contain only single and
double bonds (no aromatic types).
Examples:

 read mol2 "ex_mol2" # this example file is provided

read trajectory

read trajectory [s_movFileNameRoot]
read ICM-trajectory file with the Monte Carlo simulation trajectory.
See also: display trajectory.

read trajectory write

read trajectory [s_trj1] write s_trj2 [append] { i_fromFrame i_toFrame | I_frames }
a trajectory editing tool. Read ICM-trajectory file with the MC simulation trajectory, grab a
fragment [i_fromFrame:i_toFrame] and append it to some other file s_trj2.

272 read

read object

read object [s_objFileNameRoot] [number= { i_objNumber | I_objNumbers}] [delete]
[name= s]
read previously formed and saved ICM-molecular-object file. If ICM object file contains
several objects, all the objects are read. If argument i_objNumber is specified only the specified
object is read.
The names of the loaded objects from are stored in the S_out array, and the number of new
objects in i_out .
Options:

delete : temporarily sets l_confirm to no and, consequently, overwrites objects
with the same name without a confirmation.

♦

number = i|I : reads one or several objects for a multi-object file♦
name = s_ : redefines the object name♦

See also: build command to create an object from the sequence and copy object command
to copy the existing object.
Example:

 read object "1crn"
 read object s_xpdbDir+"4tna" name="tmp" delete

 build string "se glu" name="glu"
 build string "se his" name="his"
 write object a_1. "obb"
 write object a_2. "obb" append
 delete object a_*.
 read object "obb" number=2
 S_objNames = S_out
 show a_$S_objNames[1].

Some properties of the current object a_ which can be extracted (most of them are also applicable
to any selection):

Box(a_) - bounding box♦
Cell(a_) - crystal cell♦
Charge(a_) - total charge♦
Date(a_) - creation date of a pdb-file or 0♦
Field(a_ iField) - one of 16 user fields.♦
Field(a_ 15) - the number of missing residues♦
File(a_) - the source file name or empty string♦
Label(a_) - object remark♦
Mass(a_) - total mass♦
Nof(a_) - number of atoms♦
Name(a_)[1] - object name♦
Parray(a_) - chem-object (represented by smiles)♦
Resolution(a_) - X-ray resolution or 9.9♦
Site(a_ ..) - residue-feature information♦
Smiles(a_) - smiles string♦
String(a_ [number]) - string representation of the object selection♦
Sstructure(a_ [compress]) - secondary structure string of all molecules♦
Symgroup(a_) - symmetry group as string♦
Transform(a_ ["bio" i]) - crystal or bio transformations♦
Type(a_ 2) - type, like "ICM" "X-ray" ..♦
Xyz(a_) - atomic coordinates♦

read object parray

read object parray s_obfile [name=svarName]

reads objects from .ob file into a parray . In this case the objects are not loaded into the
workspace but instead are stored in an array. The array can also be added to a table, e.g.

read object parray "threeobj.ob" # creates array threeobj
group table t threeobj "Obj"

read 273

read pdb

read pdb [all [stack]|charge|delete|header|html|sstructure] [
s_pdbFileNameRoot [.mol/res1:res2/at1,at2,..]]
read pdb-formatted file and create a molecular object of a corresponding.

You can read all the information from the file or only the part you need:

the whole object: read pdb "/data/pdb/2ins"♦
one or several chains: read pdb "/data/pdb/2ins.a,b/" (if chain is not named, refer to it as
'm')

♦

chain fragment: read pdb "2ins.a/3:16"♦
certain atoms: read pdb "2ins./3:17/ca,c,n" (you may use name patterns with wildcards
too)

♦

ICM parses a PDB file and detects problems. It may issue 72 kinds of warnings and 33 kinds or
errors. To check if a certain type of error occurred use the Error (i_errWarnCode) function.
Structures determined by NMR are usually represented by several models separated by MODEL
and ENDMDL fields. By default only the first model will be read in.
Options:

all : may be used to load all NMR models. Each model will be placed into a separate
object. Object names will be automatically generated. This option is not necessary if
TOOLS.pdbReadNmrModels is set to "all" .
stack is an additional to all option for reading all models in a multimodel pdb file. It
leads to an internal stack for a single object, instead of creating explicit objects for each
model. Examples:

 read pdb "1htx" all # is equivalent to
 read pdb "1htx" TOOLS.pdbReadNmrModels="all"
 read pdb "1htx" TOOLS.pdbReadNmrModels="all stack" # or
 read pdb all stack "1htx"
 display stack a_ cartesian 20. loop

♦

bond : suppresses bonding of what appears to be multiresidue hetero molecules.♦
charge : read partial atomic charges from the occupancy field♦
delete : temporarily sets l_confirm to no and, consequently, overwrites objects
with the s_pdbFileNameRoot name if found in ICM shell. with the same name without a
confirmation.

♦

header : store the PDB entry header information in the object. In contrast to the html
option it does not change it and stores the header info fully and as text. Also note that the
header is assigned only to the first model (to save space). The header is returned by the
Header(os_) function for multiple objects and Header(os1_) [1] for one object.

♦

header html : both options will modify the behavior of the header option. The

 tag will be added before the carriage return at the end of teach line.

♦

html : store some the PDB entry comments and header data in the object. See also
Header function. The fields parsed are the following:

HEADER◊
COMPND◊
SOURCE◊
REVDAT◊
JRNL AUTHOR,TITL and REF◊
CRYST?◊
FORMUL◊
REMARK starting from: AUTH, TITL, REF, REFN, and also REMARK ...
RESOLUTION

◊

REF and REFN◊
HET◊

♦

sstructure : redefines the secondary structure by analyzing the pattern of hydrogen
bonds (see assign sstructure)

♦

Deleting alternative atoms Frequently there are alternative atoms in PDB objects. Sometimes
you want to get rid of all secondary alternatives and make the 1st alternative the detault. To
achieve follow this example:

read pdb "1hyt"
set comment a_//Aa,A1 " " # clear the alter-symbol of the main alternative
delete a_//A # delete atoms with non-space alter-symbol
write pdb "clean" # this object does not have alternatives

274 read

Error detection.
ICM detects chain missing residues according to the differences between SEQRES sequence and
the residues with coordinates and returns the total number of missing residues in the i_out
system variable. This number can also be returned by the Field(a_ 15) function. E.g.

 read pdb "1amo.a/"
 make sequence a_1.1 # sequence 1amo_1_a extracted
 if(i_out>1) then
 read pdb sequence "1amo" # sequence 1amo_a read
 a=Align(1amo_a 1amo_1_a)
 build model 1amo_a a_1.1 a # patch the missing fragments
 endif

See also: convert command to turn it into an ICM-molecular object and the FILTER preference
to see how to read the compressed pdb-files directly.
The fields parsed by ICM.
ICM parses most of the information from the PDB database entry and allows one to manipulate
with this information in the ICM-shell. The following fields are parsed:

ATOM : all atom properties including alternative chains. To show the info: show
a_//*. Function to extract the atom properties:

Bfactor: b-factors◊
Charge: charges◊
Occupancy: charges◊
Name: atom names◊

You can also select by many different properties of atoms, residues, molecules and
objects directly in the selection expression or via the Select function.

♦

HETATM : all properties including alternative chains (to clear the flag, use set
comment as " ")

♦

EXPDTA : assigned as the ICM-object type. ICM function: Type(os_).♦
REMARK 2: resolution is extracted. ICM function Resolution(a_).♦
REMARK 4: is shown as info upon reading.♦
REMARK 800: description of SITEs is extracted. Can be viewed by show site. You
can select these sites by a_/F" siteID"

♦

COMPND : assigned to the object comment field. Editable and reassignable with the
set comment. The comment is returned by the ICM function Namex . You may
directly select with the a_"searchString". expression.

♦

SSBOND:♦
DBREF: database reference information shown upon reading♦
SITE : sites can be shown with the show site, can be selected with the a_/F
expression.

♦

HELIX : returned with the ICM Sstructure function.♦
SHEET : returned with the ICM Sstructure function.♦
SEQRES: this sequence can differ from the sequences extracted from the ATOM records.
It is read with the read pdb sequence command and becomes an ICM-shell
sequence

♦

SCALE,TVECT,MTRIX: read but not used, the CRYST1 and ORIGX information is
used instead.

♦

CRYST1,ORIGX : the transformation vector is returned by the ICM function
Symgroup and can be applied with the transform command.

♦

Date of creation of the file (part of the HEADER record) can be returned by the Date(
a_) function.

♦

The number of residues missing in the density but present in the SEQRES record (
i_out or Field(a_,15)).

♦

Treatment of water molecules. Water molecules become molecules named sequentially
w1,w2,w3... Their original numbers which are stored in the residue field become their 'residue'
numbers, e.g. to select water molecule number 225 and 312, do not use the w.. names of water
molecues, but use the a_w*/225,312 selection instead.
Option charge tells the program to load atomic charge from the occupancy field and reset
occupancies to 1., and atomic radii from the B-factor field.
Option sstructure tells the program to automatically assign the secondary structure if it is not
provided in the PDB entry.
The file will be first searched in the local directory. Extensions *.pdb and *.brk will be tried unless
explicitly specified. If not found the s_pdbDir directory or directories will be looked up
according to the pdbDirStyle preference. This preference allows file names like pdb1abc.ent
recognized by the read pdb "1abc" command.
Examples:

read 275

 read pdb "1crn" # 1crn.brk should be either in the local
 # directory or in s_pdbDir one

 read pdb "2ins.a/" # load only chain 'a'

 read pdb "2ins.a//ca,c,n" # load only the backbone of chain 'a'

 read pdb "1crn./4:17" # load only 4:17 fragment from 1crn.brk

See also: read binary pdb

read pdb sequence

read pdb sequence [resolution] [s_pdbFileNameRoot]
quickly extract only amino-acid sequence from SEQRES records of a pdb-formatted file
without actually loading molecules. This option does not work with pdbDirStyle = "PDB
ftp-site" or "PDB web-site" .
It is important to understand that sometimes sequence from the SEQRES records does not match
the sequence extracted from the ATOM records, because some residues in flexible loops and ends
are invisible. Option resolution appends X-ray resolution to the sequence name (like
9lyz_a19, 19 stands for 1.9 resolution). 'No' is appended for NMR and theoretical structures. It can
be used later by the group sequence unique command to compile the representative
list of PDB chains.
PDB is famous for having numerous errors which are never fixed. In SEQRES sometimes the
stated number of amino-acids in SEQRES does not correspond to the actual number of
amino-acids (e.g. 1cty, 1ctz, 1ctz, 2tmn, 1ycc, 2ycc) .
The sequences will be called according to the pdb code and the chain name. In case of one chain
without a name, ICM assigns name "m" . e.g. 1est_m , 2ins_a , 2ins_b.
Records are converted to lower case. In rare cases, such as 1fnt, in which there are both upper
and lowercase chain names, the lowercase names become uppercase, e.g. 1fnt_a for the first
chain and 1fnt_A for the 33-rd chain.
Chains with numerical chain identifiers are automatically converted to literal chain IDs in the
same way as the read pdb procedure does that. Chain 0 becomes a , chain 1 becomes b , etc.
An example script to detect problems with pdb sequences (you can build the list with the
makeIndexPdb and mkUniqPdbSeqs macros)

 read sarray s_pdbDir + "pdb.li" name="a"
 l_info = no
 errorAction = "none" # otherwise breaks at pdb1aa5.ent
 for i=1,Nof(a)
 read pdb sequence s_pdbDir + a[i]
 delete sequence
 endfor
 Error> no SEQRES records in file /data/pdb/af/pdb0af1.noc.Z
 Error> no SEQRES records in file /data/pdb/ao/pdb1ao2.ent.Z
 Error> no SEQRES records in file /data/pdb/ao/pdb1ao4.ent.Z
 Warning> Sequence of chain "pdb1ati_c" starts with 'UNK' and is unknown
 Warning> Sequence of chain "pdb1ati_d" starts with 'UNK' and is unknown
 ..

The number of residues which are present in the SEQRES record, but are missing from the ATOM
records is returned by the i_out variable, or Field(a_ 15) function.

read profile

read profile [s_prfFileNameRoot] [name= s_prfName]
read ICM-sequence profile from a file and create an ICM-shell variable of profile type.

read prosite

read prosite [s_prositeFileName]
read all the patterns from the prosite database (Amos Bairoch, University of Geneva, Switzerland)
and create two string arrays: prositeNames, and prositePatterns, containing names and
patterns, respectively. The search may be performed by the find prosite command. Check
also the find prosite command.
Examples:

 read sequence "zincFing.seq" # load sequences

276 read

 find prosite # search all 1374 patterns
 # through the sequence

See also: s_prositeDat .

read rarray

read rarray [s_rarrayFileNameRoot] [name= s_RName]
read real array from a file. File format is free.

read blob

read blob [s_fileName_or_URL] [name=s_blobVar]

read any data from ~s_fileName_or_URL or standard input into blob shell variable.

See also: blob Blob

read sarray

read sarray [connect] [comment] [underline=i] [number=i] [s_fileName] [name=
s_varName]
read any text from a sar-file as a bunch of strings separated by carriage returns. Create an
ICM-shell variable of sarray type.

Options:

comment : skips comment lines starting from hash (#).♦
connect : will connect/merge several consecutive lines if a continuation symbol
(backslash) is found at the end of the line.

♦

underline= iFirstLine : skips lines before this number♦
number= nLines : read only specified number of lines♦

Example:

line1 \
 continue in line 1\
 more to line 1
line 2

will turn into:

#>S a
line1 continue in line 1 more to line 1
line 2

* underline= N : reads only under specified line (skips N first lines).

reading large data amounts by chunk

read sarray [limit=n_records] [keep] [separator=s_sep] [s_fileName] [name =
s_varName]

reads up to n_records. s_sep is used as a record separator. Sets l_out to yes if the end of the file
is reached.

keep option keeps file open for the next read chunk. Without keep the command will always read
from the beginning of the file.

Example: (read uniprot file)

while (yes)
 read sarray keep separator = "//\n" limit=100 "/data/uniprot/uniprot_sprot.dat" name="s"
 if (l_out) break
 for i=1,Nof(s)
 Match(uniprot_sprot[i], "ID\\s+(\\S*?)" 1)
 endfor

read 277

endwhile

read table mol command is also supports limit and keep options

Example:

while (yes)
 read table mol keep limit=1024 "large.sdf" name="t"
 if (l_out) break
 # process 't'
 print Nof(t)
endwhile

read sequence

read sequence [group [= s_groupName]] [fasta [auto|selection..] | pir| gcg| msf
] [s_seqFile]
read amino-acid or DNA sequence from a variety of sequence file formats and create an
ICM-shell variable of sequence type. The GeneBank format is recognized automatically.
Option group with optional s_groupName creates a sequence group on the fly.

Option auto (with fasta or pir) will create an alignment if all sequences (with dashes) in a
multiple fasta file have the same lengths.

Option selection (with fasta or pir) will create a selection if the sequences read.

read sequence swiss [field= S] [group [= s_groupName]] [s_seqFile]

read sequence swiss web s_swissProtName

Example:

read sequence swiss web "1433B_HUMAN"
show site 1433B_HUMAN

Note, that if you want to ignore some types of the swissprot FT feature table, e.g. HELIX, or
COIL, see swissFields)
See also: swissFields

read sequence database

read sequence T_indexSubset
read amino-acid or DNA sequence from an indexed sequence database. T_indexSubset contains
the selected entries which can be defined by a table expression (e.g.
SWISS.ID=="^IL2_*"). The names of the sequences extracted from the database to the ICM
memory are stored in the S_out system string array. i_out contains the number of the
sequences loaded. These variables are used in automated scripts for bioinformatics (see
searchSeqDb or searchPatternDb) macros.
Examples:

 read index s_inxDir+"/SWISS" # load the Swissprot index
 read sequence SWISS[1:20] # first 20 entries
 show S_out[1], $S_out[1] # show the 1st name and the sequence

 read sequence SWISS.ID=="^IL2_*" & SWISS.ID!="*_MOUSE"
 S_seqNames = S_out
 for i=1,Nof(S_seqNames)
 seqName = S_seqNames[i]
 show seqName, Nof(String($seqName),"[KR]") # stat. of positive charge
 endfor

read stack

read stack [append] [s_stackFileNameRoot]
read stack of conformations from a cnf-file. This command resets the energy
terms as they were saved in the cnf-file. The terms string is returned in the s_out variable.

278 read

Both full stacks saved with the write stack simple command and compressed stack files
(the default) will be recognized. Note that ICM versions before 3.022 could not read or write the
compressed format.

read string

read string [s_textFile] [name= s_sName]
read any text from either standard input or a s_textFile. Place the result into the s_out string.
Reading string from standard input can be used to get URL-encoded stream generated by the
HTML-form. The read string command can also read from ftp/http.
See also: read unix command which allows one to read in ICM the output of any unix
command.
Examples:

cat someFile | icm -s -e "read string;Tolower(s_out)"

more:

#Put these lines into _tmp file. See how to precess the HTML-form output.
 read string # e.g.: echo "aaa=bbb&ccc=ddd" | icm _tmp
 a=Table(s_out) # split the input string into two string arrays
 # a.name and a.value and form table 'a'
 show a # equivalent to show column a.name a.value
 quit

 read string "ftp://ftp.pdb.bnl.gov/index/compound.idx" name="pdbList"

In the last example the file will be downloaded from the PDB site and dumped into the pdbList
string variable.

read table in ICM or CSV/TSV format

ICM-formatted tables read table [database] [name= s_tableName] [s_tableFileName
] [split= s_fieldDelimeter]
reads internal ICM text format for tables. It has fields for the table headers. The table name is
saved to the s_out variable. ICM needs two lines with the table name and the field names in the
following format: (an example):

#>T atm
#> name code weight
hydrogen 1 1.008
....

s_fieldDelimiter is NOT used in the ICM table reader. If you want to change the default
field delimiter use the split= s_fieldDelimiter argument. To skip multiple occurrences of a
delimiter symbol, repeat it two times, e.g. split= " \t\t" (the same trick is used in the
s_fieldDelimiter variable for the Field function)
CSV or TSV formatted tables

read table separator=[","|"\t"|":"..] s_csvtableFileName [delete][header][simple]
[name=s_tableName] [comment= s]
reads tables in portable csv (comma-separated-value) or tsv (tab-separated-value) formats.
Options:

comment[=] : skips lines beginning with the symbol (pound sign # is the default)♦
delete : deletes table with the same name♦
group : group multiple columns of real type into one column of vectors (same with
integer columns)

♦

header : interprets the first line as the names of the columns.♦
number : treat empty fields in numeric columns as ND (the default action is to keep
those columns as string arrays)

♦

simple : quotes are not treated as regular characters♦

Flanking blanks for each field are trimmed. For example to read the following table from iq.csv
file:

name,IQ
 Max, 150

read 279

 Jack, 150
Peter, 130

type:

read table separator="," header "iq.csv" # or
read table separator="," header "iq.csv" name="t" # to rename the table

Normally the csv/tsv format does not allow any line comments. ICM supports an extended format
in which some lines can bee commented out by a comment string in the beginning of the line, e.g.

> cat iq.csv
this is a list of IQs
name,IQ
Max, 150
Jack, 150
Peter, 130
> icm
icm/> read table separator="," header "iq.csv" comment="#"

See also: table, icm.tab file, add column .
Examples:

 read table s_icmhome+"atm" name="ATOMS" # atm.tab file by default
 sort ATOMS.weight # sort according to the weight array

Reading SMILES file into a table

read smiles [header] s_filename [name=s_newTableName]

reads the s_filename file in smiles format into a table. Table name is derived from the file name
if s_newTableName is not specified explicitly.

With the header option specified, the first line in the file is used for table column names.
Example of the space-separated smiles file with header:

chem prop
CCC 1.0
CCCC 2.0

read smiles header of this file will create a table with two columns chem and prop

Reading an html table into an ICM table

read table html s_htmlFile|or URL [name=s_newTableName] [all] [header=[yes|no]]
[simple]

this command will read a file containing one or several html tables, then will select the largest
table (by the number of rows) and read it into an ICM table.

Options:

all read all tables rather than the largest one;♦
header interpret the first row as column names even in cases when the column name
row is incorrectly marked with the TR tags instead of the correct TH tags;

♦

header=no will do the opposite: force the reader to read the first row as a table row;♦
simple remove all HTML tags from the cell values.♦

Reading an mmcif-file into an ICM chemical table.

read table mmcif s_mmcifFile

reads a pdb mmcif file with multiple small molecules (not for the whole pdb) into a chemical
table. The short description of mmcif format is given below. The full description is provided by

280 read

pdb .

This command will create a chemical table and all general properties will be converted into
columns.

Reading an MOL2-file into an ICM table.

read table mol2 s_mol2FileName

reads an mol2 file into an ICM table which can be visualized as a chemical spreadsheet.

Reading an sdf-file into an ICM table.

read table mol [exact | unique] [simple|simple=S_cols] s_sdfFileName [index]
[limit=i [keep]]

read table mol [exact | unique] T_sdfFileIndexExpression [index]
reads an sdf file into an ICM table which can be visualized as a chemical spreadsheet. It either
reads all entries directly from the file, or read the entries selected by the index expression (e.g.
chemvendor[{1,15,53}]). The the latter case the index file needs to be read in first.
In contrast to the read mol command, the read table mol command creates only a table
and does not create explicit ICM molecular objects Consequently it can read over hundred
thousand mol-records into a table without overwhelming ICM.

The table name is saved to the s_out variable.

The property fields of the sdf file, e.g.

> <logP>
 2.3
> <logD>
 1.8

are converted automatically into table columns with appropriate type. The mol-file core which
describes atoms and bonds is automatically displayed as a chemical structure by ICM. By default
the empty property fields are interpreted as having 0. value, if all non-empty fields are numerical.
Options:

simple : keeps all columns as string arrays. Optionally a list of column names can be
provided: simple = {"col1","col2"}. In this case only listed columns will be kept as string
arrays

♦

exact : keeps columns containing numbers and empty fields as string arrays instead of
trying to guess the numerical default value for those columns.

♦

index : creates an extra column named IX in which the compound order number in the
file is stored. If property IX already exists in the file, its values will be overwritten.

♦

keep : preserves the file pointer and allows one to read the NEXT frame (or group or
rows) with the next read table mol command. See also: l_out to indicate if the
next read is possible.

♦

limit= n : determines the size of the chunk to read at a time.♦
unique : standardizes the property field names. For example, "Molecular Weight",
"MWeight", "Mol_weight" will be translated into "mw". This option may be helpful if
you want to merge two sdf files.

♦

Example:

%icm -g
read table mol unique "sigma.sdf"

write index mol "sigma.sdf" "sigma.inx"
read index "sigma.inx"
read table mol sigma[{1,15,26}]

Reading chunks from t.sdf and spitting out chunks of the itb stream:

 while yes
 read table mol "t.sdf" keep name="t" limit=1024
 if (l_out) break
 write binary frame t

read 281

 endwhile

See also:

write table mol command,♦
Nof(t.mol s_smartExpression)♦
read smiles [header] : reads space separated smiles with properties♦
read table mol2♦

read table into arrays

read column [separator= s_Separator] [group [name= s_tableName]] s_fileName
read a multicolumn table with strings and numbers and create appropriate arrays. If you add a ruler
starting from #> and looking like this

#>-name1---name2------name3---------name4---

the arrays will be created with specified names. If ruler is missing, default names (I1, I2 ..., R1,
R2,..,S1, S2, .. for iarrays, rarrays and sarrays, respectively) will be created. You may control field
formation by s_fieldDelimiter variable or by adding separator= s_Separator explicitly.
The list of array names will be stored in s_out so you can always say

 read column "res"
 show column $s_out

note that a triple quote permits multiline entry
read column group name='t' input="""
a 1 2.2
b 2 3.2
"""
show t

Another way to read a table into ICM arrays is to read it as table with the read table
command and split the table afterwards.
Reading comma-separated-value or tab-separated-value formats
While the best way to read a csv file is to use the read table separator="," command,
you can use the read column group command as well. To read a table in
comma-separated-value (csv) or tab-separated-value (.tsv) format redefine the
s_fieldDelimiter value (or use the separator="," option), and use the read column
group command.

read column group name="t" "t.csv" separator=","
write t separator=","

See also: write column, read table , split table , show column, icm.col.

Reading internal variables from a file

read variable [s_varFileNameRoot]
read ICM-molecular object variable values (torsion angles, phase angles, bond angles, bond
lengths) from a var-file. vs_out selection will contain a selection of variables which have
been modified by the command. Variables are assigned according to the residue number and the
variable name. If residue name is different (i.e. you want to assign phi,psi of an alanine 15 to
glycine 15), the program sends a warning. If more than one molecule is present in the current
object, matching of molecule names is required. See also set vs_ command.

Reading and setting a vew from a file of view parameters

read view [s_viewRarrayName]
read rarray of 37 display parameters for window size, scale, view matrices, etc. and set them.
See also: set view, View () function
Examples:

 build string "se ala"
 display
 write View() "a"

282 read

rotate the image
 read view "a" # restore view

Reading vrestraints from a file

read vrestraint [s_rsFileNameRoot]
read variable restraints (often referred to as rs) from a *.rs file. Do not forget to
read vrestraint types first. Option only tells the program to delete previous variable
restraints.

Reading vrestraint types from a file

read vrestraint type [s_rstFileNameRoot]
read variable restraint types from a *.rst file. Option only tells the program to
delete previous variable restraint types.

Reading XML from a file

read XML formated document into a hash(formely collection) object.

read xml { s_fileName | s_url | input=s_xmlBuffer } [name=s_name]

Example:

read xml input="<a>1" name="x"
#

read xml name='x' "http://www.drugbank.ca/system/downloads/current/drugbank.xml.zip"
show name x

See also: array , xml drugbank example

Reading JSON from a file

JSON (an acronym for JavaScript Object Notation pronounced) is a lightweight text-based open
standard designed for human-readable data interchange. Read more here.

read JSON formated document into collection object.

read json { s_fileName | s_url | input=s_jsonBuffer } [name=s_name]

Example:

read json input='{ "a":"b", "c":[1,2,3]}' name="x"

rename

rename oldName { s_newName | u_newName }

rename atom as1 s_newElement\n\

rename as1|rs1|ms1|os1 s_newName # rename os full -for description\n\

rename image P_imageArray i_index s_name\n\

rename page P_pageArray i_index s_name # see below, for icmdb\n\

rename sequence resolution # from 1abc_a to 1abc_a21 for sequences
linked to a_A. used in group unique..\n\

rename anything to anything else. More specifically you can rename commands, ICM-shell

read 283

variables, objects, molecules, residues and atoms. Renaming commands is possible, but then you
must not forget to change them in all the standard ICM-scripts. Using aliases instead allows
you to use both the original and the translation, however it slows down the ICM-shell
interpretation. Be careful with a new name to avoid name conflict.

rename object

rename { os [full] | ms | rs | as } s_newName
change selected names. To change the long name of the object (it can contain space in contrast to a
regular object name), use the full option.

If you rename multiple molecules and provide a s_neweNameRoot (say, "a") at attempt will be
made to name them like this: "a","a1","a2",... .
Examples:

 rename old mature # for elderly
 rename sequence[1] ins # rename the first sequence
 rename a_mol1/3/ca "ca1" # rename an atom
 rename a_mol1/3 "alam" # rename a residue
 rename a_mol1 "kuku" # rename a molecule
 rename a_H "h" # all heteroatoms h,h1,h2,h3,..
 rename a_1. "dna" # rename an object
 # rename the full name of the object
 rename a_1. full "hydroxanthine phosphoribosyl trnasferase"
 list a_1.

Groups of atoms also can be renamed from a chemical (2D) template with the set bond
topology as chem_source label command.

rename molcart table

rename molcart table s_oldTableName s_newTanbeName [connection_options]

renames Molcart table including all index tables. Database connection may be specified by
connection_options The table name s_oldTableName may be prefixed by the database
name, else current database is assumed.

See also: molcart, list molcart

rename/move file

rename system s_fileNameFrom s_fileNameTo

Renames or moves a file. If target file exists it will be overwritten.

Example:

rename system "/tmp/aaa" "/tmp/bbb"

See also: sys , delete file delete directory

restore preference

restore preference [all | prefname1 prefname2 ...]

restores values of the named (or all) GUI preferences to the default values.

return

return [error] [s_message]
return from a macro before endmacro usually under specific conditions. Similar to exit
command returning from a file to interactive mode. Option error will set the error flag which
can later (outside the macro) be checked with the Error() function. The message s_message will
be stored in the s_out string shell variable.
Examples:

284 rename

 macro aa
 if(Nof(sequence)==0) return # a silent return

 endmacro

 macro aaa as_1
 if(Nof(as_1)==0) return error " aaa> Nothing to do"
 show as_1 # a pretty silly macro
 endmacro

 macro bbb
 if(Nof(object)==0) return error " Error_in_bbb> No objects in the system"

 endmacro
 bbb # call this macro
 if(Error) print "something went wrong with macro bbb"

rotate

the main rotate command. Subtypes of this command include rotate object, rotate
view, rotate grob. interruptible background rotations and rocking
movements.

Also, to perform a fixed number of interruptible rotations or rocking movements, use this:

GRAPHICS.rocking=5 # for X-rotation. see other types of rocking/rotation
GRAPHICS.rockingSpeed=3.
display rotate 2 # perform two full cycles and stop

rotate object

rotate [os | ms | g_grob] M_rotation
rotate an object (os_), one/several molecules (ms_) or g_grob with the specified rotation matrix.
Examples:

 rotate a_1. Rot({0. 0. 1.},30.) # rotate by 30 degrees
 # about Z-axis

See also: interruptible background rotations and rocking movements.

rotate grob

rotate g_grobName M_rotation
rotate a graphics object.
Examples:

 read grob "oblate"
 display g_oblate magenta
 rotate g_oblate Rot({0. 0. 1.},30.)

See also: interruptible background rotations and rocking movements.

rotate view

rotate view M_rotation
rotate view in the graphics window with respect to the screen axis X (horizontal), Y (vertical) and
Z (perpendicular to the screen). This command is great for creating movies or demos when the
graphics should be manipulated from a script.
Example:

 build "alpha"
 read trajectory "alpha"
 display a_//ca,c,n
 for i=1,100
 load frame i
 rotate view Rot({0. 1. 0.} , -1.) # rotate around Y by -1 deg.
 endfor

See also:

return 285

the View () function♦
the set view command.♦
interruptible background rotations and rocking movements.♦

select

Many ICM shell objects may have some parts selected in order to perform various actions on
selected parts. The select family of commands allows one to create/modify/remove selections of
ICM objects of subitems in ICM objects.

The main select commands:

select [off] [alignment | grob|iarray|map| matrix| profile| rarray| sarray|
sequence| table..] [s_namePattern]

(un)selects ICM objects with certain name pattern (or all), e.g. select grob "g_pocket*"

select chemical ... select patterns in 2D chemicals of a chemical table

select alignment as

select [dist|distance|hbond] as

select treeArray center

See also:

selections in molecular objects are treated differently.♦
Select function♦
select by center of mass♦

Align/color/select chemical by pattern or other properties

This command can be used for:

Align 2D chemical by pattern (with rotate option)

select chemical chemarray {s_smarts|chempattern} rotate [index=i|I]

Select matched fragments(s) (with all and/or append option)

select chemical chemarray {s_smarts|chem} [all] [append]

Color matched fragments (with color option)

select chemical chemarray {s_smarts|chem} color=s_color [all] [append]

Use atom-level predicate s_filter to color/select individual atoms.

select chemical chemarray filter=s_filter [append] [color=s_color]

s_filter should contain a logical expression which may use certain atom-level properties.

Mass - returns atomic mass♦
NofHeavyBonds - returns number of heavy neighbors♦
NofHydrogens - returns number of attached hydrogens♦
Name - returns atom name♦
Color - returns currently assigned color♦
HBA - returns 1 if atom is hydrogen bond acceptor, 0 - otherwise♦
HBD - returns 1 if atom is hydrogen bond donor, 0 - otherwise♦
Chiral - returns 0 for non-chiral, 1 for S, 2 for R, 3 for undefined/racemic.♦
nRng - returns the number of rings atom is member of♦
Code - returns atomic number♦
IsOrganic - return 1 if atom is H,C,N,O,S,P,Se,F,Cl,Br,I. 0 - otherwise♦
Valency - returns atom's valency♦

286 rotate

Hyb - returns atom's hybridization state (possible values: 0,1,2,3)♦
AtomNum - returns atom's order number in connectivity table or smiles.♦
Aromatic - returns 1 if atom is aromatic, 0 - otherwise.♦

Examples:

add column t Chemical({ "CC1C=CC(C(NCCC(C=CC(S(NC(NC2CCCCC2)=O)(=O)=O)=C2)=C2)=O)=NC=1",\
 "C#CCN1C(=NC(c2ccc(cc2)S(N2CCCCC2)(=O)=O)=O)Sc2cccc(c12)[Cl]"})
color all hydrogen bond acceptors
select chemical t.mol "[O,S&v2,N&^2&X2,N&^1&X1,N&^3&X3]" all append color=lightblue
the same but using atom-level expressions
select chemical t.mol filter="HBA" color=lightblue
select all SP3 atoms
select chemical t.mol filter="Hyb==3"
color first atom of the first molcule
select chemical t.mol filter="AtomNum==1" color=red index=1
color all hydrogen bond donors
select chemical t.mol "[!#6;!H0]" all color=lightred
align molecules by scaffold
select chemical t.mol "C(=C(C=CC1S(=O)(=O)[R2])[R1])C=1") rotate
select all methyls and delete them
select chemical t.mol "[C;D1]" all
delete chemical selection t.mol

See also: delete chemical selection find table

select-3d-label

select [edit] 3d-label

graphically selects the specified label. It appears as a little green cross. The labels are considered
as a subclass of graphical objects.

Options:

edit : displays the label handle allowing to drag the label♦
See also:

make 3d label♦
set label label_3D♦

set family of commands

to change properties/attributes of existing icm-objects.

set area|atom ball|as
..|background|ball|bfactor|bond|cartesian|chain|charge|chiral|color|comment|comp_matrix|
conf|
directory|drestraint|edit|error|factor|field|font|foreground|formal|format|grob|group|header|hydrogen|
index|key|label|link|map|menu|mmff|molcart|name|object|occupancy|plane|property
.. |randomize| reflection|resolution|selftether|separator|sequence
reverse|site|slide|sstructure|stack|stereo|stick|swiss|symmetry|
table|tautomer|term|tether|texture|topology|torsion|tree|type|view
arguments

Example:

 set bfactor a_//c* 20.

set area sequence : positional factors for sequence alignment

set area seq [{ R_factors | r_factor }]
sets/resets a property array assigned to a sequence. Each amino acid can be assigned a relative
solvent accessibility value for this residue in a three-dimensional model. 0. - fully buried (the
highest possible factor), 1. - fully exposed. These values can also be used to influence the
alignment (buried residues with accessibilities close to zero will have larger contributions). The
exact dependence residue-residue score factor on this value is defined by the accFunction

select 287

array.
set area rs [{ R_areas | r_area }] sets/resets an array or accessible area values (or value) to
the residue selection. Note that for the residue areas contain absolute values (e.g. 84., 120., etc.)
while for sequences (see above) the area/weight values are relative accessibilities in the range
[0.,1.]. The maximal possible accessibilities are returned by the Area(rs_ type) function.
Example:

 read object s_icmhome+"crn.ob"
 show surface area
 set area a_/asn Area(a_/asn type) # reset areas to maximal values

 set area a_crn.m 0.
 set area a_crn.m/ Random(0. 1. Nof(a_crn.m/))

See also: accFunction , Align (seq1 seq2 area)

set atom label or the ball radius

set atom ball as R sets custom balls to atoms. Can be returned with the Radius(as)
function

set atom label as S sets custom labels to atoms. Can be returned with the Label(as)
function

set atom

(re)sets atom properties, such as atom presence (on and off), coordinates,

set as on|off activate (unhide) or inactivate (hide) atoms for energy and surface calculations.
The inactive atoms can be shown in graphics as shaded wire models. Example: set a_//h*
off ; Nof(a_// off) ; set a_//h* on By default all atoms are active.

See also: Nof(on|off), set atom ball label

set as_Natoms M_3xN [mute]
set as_Natoms M_3xN [mute] # eg set a_W//vt1 Xyz(a_W//o)

set as_tethered_inICMobj [tree] # follows tethers in this case the target coordinates are simply
taken from the destination positions for the tethers.

set as_one_vt1_atom_inICMobj [R_3xyz|M_3x1|as]

set as_nonICM_X as_ICMtetheredToX # used to update sdf/mol coordinates after optimization.
this command is used to inherit the coordinate changes in a converted object with different order
of heavy atoms. Imagine the following scenario:

a mol file is read into a nonICM object,♦
this object is converted with option tether (the order of heavy atoms may change)♦
the converted object is optimized and the heavy atom coordinates are changed♦
now there is a need to transfer the changed coordinates back to the source atoms in the
nonICM object.

♦

The latter is achieved via the above set command.

set rs s_secondaryStruct # e.g. set a_/1:3 "HHH" this command sets phi and psy angles of the
selected residues in an ICM object according to the secondary structure

set chain ms s_chainSymbol

With a single atom selection, ICM sets a given atom to the center of gravity of the corresponding
molecule (no arguments), given point in space (R_3Dvector argument) or center of gravity of
selected atoms (as_select argument).
If multiple atoms are selected, ICM sets the specified atoms to their new XYZ positions. The XYZ
matrix can be returned by the Xyz (as_) function.

If multiple atoms are tethered the coordinates of the tethered atoms can be set to the coordinates of
the target atoms (see also minimize tether, superimpose and minimize "tz".

288 set family of commands

Examples:

 build string "se ala his glu"
 set a_/3/ca Matrix(Mean(Xyz(a_//ca))) # 3rd Ca to the center of mass of all Ca s
 set a_/3/ca Matrix({-3., 12., 14.5})

 set a_//vt1 # set the first virtual atom to the center of mass
 randomize a_//vt1 0.1 # randomize the vt1 position in case of singularity

For ICM molecular objects, in the most popular operation (set a_1//vt1) the first of the two
virtual atoms (vt1) attached to the beginning of the selected molecule is set to the center of
gravity of the same molecule. The purpose of this action is to simplify molecular rotation and
translation via the first six free virtual variables. The tvt2 and tvt3 torsions and avt2 planar angle
determine rotation of the whole molecule around the axes passing through the center of gravity.
Useful for docking.
Examples:

 read object s_icmhome+"complex.ob"
 set a_1//vt1 # now it is easy to rotate the 1st mol.
 # by changing tvt1
 set a_2//vt1 # now it is easy to rotate the second molecule
 set a_2//vt1 {1. 1. 1.} # move it to {1. 1. 1.} point

Multiple molecules: let us set vt1 for all water molecules to oxygen
to fix the first 3 variable and keep the oxygen positions unchanged
 read pdb "2ins"
 convert
 set a_w*//vt1 Xyz(a_w*//o)
 fix v_w*//?vt1
 mc v_w*

See also:

command description
set a_/*
s_secondaryStructure to change phi,psi angles according to secondary structure,

virtual atoms/variables information about virtual atoms and variables

move command which goes further and actually changes the
topology of the ICM-tree.

set cartesian command that assigns coordinates from a template file

set background image in graphics

set background image bgimage full set background image bgimage exact
center set background image bgimage exact [origin=I_pos] [r_scaleCoeff]

- set image as graphics background

With the exact option the image will be displayed in its own resolution. If center option is
provided it will be centered, otherwise you may specify the origin of the left bottom corner with
origin option (default {0 0}) and/or scale coefficient. Image created in this mode is drag-able
and resize-able by mouse using 'drag-atom' mode.

With the full option the image is scaled to the maximum size when it still fits in the window
Otherwise the image is scaled so that its central part fully covers the window without margins.
Aspect ratio of the image is preserved in all of the above cases.

set background image off

- clear graphics background (remove any images assigned)

Examples:

 read image s_icmhome+"splash.png"
 set background image album[Nof(album)]

set family of commands 289

set bfactor

set bfactor as { r_NewFactor | R_NewFactors } set bfactor rs R_NewResidueFactors
set B-factors of selected atoms to a specified real value (or individual values). To assign individual
b-factors, provide a real array with b-factors for each atom. To assign the individual b-factors at
the residue level, provide matching residue selection and R_NewResidueFactors array.
Examples:

 build string "ala his trp" # also includes N- and C- terminal groups
 set bfactor a_//* 20.
 set bfactor a_//ca {20.,10.,30.} # individual atomic factors

 set bfactor a_/2:18/ca,c,n 10.

 set bfactor a_/* {10.,20.,30.} # individual residue factors

set bond type

set bond type as_class1 [as_class2] { i_type }
set the bond chemical type (0 - undefined, 1 single, 2 double, 3 triple, 4 aromatic,9 quadruple,10
amid).
set bond auto ms
with the auto option the command automatically reassigns patterns of single and double bonds. It
performs the following operations:

identify aromatic rings in object os_ from patterns of single and double bonds. Use
preference wireStyle = "chemistry" (Ctrl-L) to see the bond types. This is done
automatically upon reading of objects, mol and mol2 files if logical l_readMolArom is
set to yes.

♦

for ICM objects, set ICM bond variable types according to bond chemical type, atom
types and distance between them

♦

Example:

 read pdb "1crn"
 display
 wireStyle="chemistry"
 set bond type a_//c a_//o 2 # double # standard bonds in a/acids
 set bond type a_/phe,tyr,trp/[cn][gdez]* | a_/arg/cz*,nh* 4 # aromatic
 set bond type a_/as?/cg*,od,od1 | a_/gl?/cd*,oe,oe1 2
 build hydrogen a_/A

See also: set bond topology

Transfer chemical structure, formal charges and bonds (or atom
names), from smiles or a chemical.

set bond topology as_ [smiles|chem1 [label]]

The bond orders and formal charges for a molecule in object can be modified according to the
smiles string or a chemical if they match topologically (i.e. without consideration of bond
orders and formal charges). Arguments:

as_ atom selection in an ICM or non ICM object, it can also be a selection of different
level rs_, ms_ or os_ .

♦

smiles string with the new bond orders and formal charges, e.g. "C1[N+]CCCC1" for a
charged piperedine.

♦

chem1 a chemical parray with one chemical in it, it can be read from a mol or sdf
file, e.g. read mol table "myNewChemStruct.sdf"

♦

label : option to transfer atom names from a 2D chemical along with bonds and
charges. The atom names can be set in 2D editor with right-click and choosing "Edit
Atom Label" item. They can be viewed by choosing View/Show full atom
names in the View menu. The atom names are stored in the .sdf format as M ZZC
records (e.g. M ZZC 3 cg).

♦

The command works as follows:
a substructure match without formal charges and bond orders is performed in all
molecules and atoms selected (both ICM and non-ICM objects can be treated, but the

♦

290 set family of commands

hydrogens are adjusted only in non-ICM ones)
only the 1st match is considered in case of multiple matches of a smiles string or a
chemical. The command was meant to fix the whole molecule

♦

the bond orders and formal charges from the first match are transferred to the selection.♦
To apply thie command to an ICM object follow these steps:

strip os_ reduce the object to a non-ICM type♦
set bond topology ms_ s_newSmiles # will fix hydrogens in the changed areas♦
use convert2Dto3D or 3Dto3D macros if you want to change geometry or do it in the
Ligand Editor.

♦

set bond topology ms_hetero|as_hetero auto

guesses bond orders from coordinates (hybridization and angles) but only for molecules of
non-ICM type marked as HETATM (type 'H')

set cartesian : imposing ring templates

set cartesian os [X_3D_chem_templates]

By default this command is trying to find chemical matches of the selected object with a set of 3D
molecules in a template_3D.sdf file ($ICMHOME directory) and sets coordinates to the
template if a match is found. The file can be modified, or one can use your own external set of
templates as the X_3D_chem_templates array . Example:

 read mol s_icmhome+"template_3D.sdf" 1
 set cartesian a_

This command is used in the convert2Dto3D macro.

set chain symbol

set chain ms_molecules chainSymbol

sets the chain character to the selected molecules. Only the first character of the string is used as
the chain identifier. If the chain character is not set is kept as the space symbol (' ') but is shown
and can be selected as underscore (_) .

Example:

read object s_icmhome+"complex.ob"
set chain a_* " " # clean up
show a_C_ # all molecules have blank chain character
set chain a_2 "A"
set chain a_1 "B"
show a_CAB

set charge

set charge as_select { r_NewCharge | add r_Increment }
sets or increments partial electric charges of selected atoms to or by specified real value,
respectively.
set charge as_select { R_NewChargeArray | add R_ArrayOfIncrements }
sets or increments partial electric charges of selected atoms to or by a specified real array.
The array assignment is useful for saving and restoring the charges.
Examples:

 set charge a_//* 0.

 set charge a_/lys/nz | a_/arg/cz 1.0

 set charge a_/asp/od* | a_/glu/oe* -0.5

 oldCrg=Charge(a_//*)
 set charge a_//* 0.0
 set charge a_/asp/od* | a_/glu/oe* add -0.5
do something with these simplified charges
 set charge a_//* oldCrg

See also: set charge formal, set charge mmff .

set family of commands 291

set charge formal

set charge formal as_select r_NewFormalCharge
sets formal partial electric charges of selected atoms to or by a specified real value. The charge
will be rounded to the nearest value proportional to 1/12th. The following values are common:
+-N, +-N/2., +- N/3., +-N/4., +-N/6. Note that the formal charge can not be arbitrarily changed
without appropriate changes in the surrounding bond types. The formal charge will be
considered by the Smiles function.
Example:

 read object s_icmhome+"crn.ob"
 set charge formal a_//n -0.333 # a formal charge of -1/3.

See also: set charge formal auto, set charge, set charge mmff .

set charge formal auto

assigns formal charges according to pKa base and acids model.

set charge formal auto X_chem_array|ms_sel r_pH(7.0)

Example:

read table mol "t.sdf" name="t" set charge formal auto t.mol 7.0 # charge at pH=7

Note: this command support nProc option for parallelization.

displaying pKa values for chemicals:

add column t Chemical({"CCCCN","CCCNCCC","C(=O)O","CC(=O)O","CCC(=O)O"}) # we need a chemical table
here is the action on table t
add column t Predict(t.mol "MolpKaBase") name="pkab"
add column t Predict(t.mol "MolpKaAcid") name="pkaa"
set label t.mol t.pkab window= {0.,14.}
set label t.mol t.pkaa window= {0.,14.}
set format t.mol comment = "only the lowest number is significant"

set charge mmff

set charge mmff as_select
set atomic charges according to the rules described in a series of publications on the
Merck Molecular Force Field abbreviated as MMFF94 or just MMFF.
This command requires the mmff atom types (see the set type mmff command). Do not be
surprised that the methyl groups have zero partial charges. That is how they are defined in the
MMFF algorithm. This command is automatically execute if you specify option charge in the
set type mmff command.
Example:

 read object s_icmhome+"crn.ob"
 set type mmff # mmff atom types
 show atom type mmff
 set charge mmff # charges

 read mol s_icmhome+"ex_mol.mol"
 for i=2,Nof(object)
 set object a_$i.
 display
 build hydrogen
 convert
 set charge mmff
 display ball
 color a_//* Charge(a_//*)//{-1., 1.} ball
 endfor

See also: set charge, set charge mmff .

292 set family of commands

set chiral

set chiral as [0|1|2|3] set a chiral flag for the selected atoms. The meaning of the flag:

0 chirality is not set♦
1 R-chirality♦
2 S-chirality♦
3 a racemic mixture of two chiral isomers♦

If no explicit integer flag is specified the program will automatically assign the flag from the local
geometry and topology.

set color directly and without graphics

set color atom_representation_or_label as color

set color ribbon|base|{residue label} rs color

Allowed atom representations:

wire♦
stick♦
ball♦
xstick♦
cpk♦
skin♦
surface♦
site♦
atom label♦
variable label♦

The set color command is equivalent in action to the color full command (e.g. color a_*.
full alignment). Option full allows one to set colors regardless of the display status.

set color ali_lignment [{i_color_Schema_Num|s_color_SchemaName}]

Sets alignment coloring schema. If no schema number is provided then default will be set. To
modify existing color schemes or introduces new ones, modify the content of the
CONSENSUSCOLOR file .

Example:

set color alig "icm-combo"
set color alig # default 'consensus-strength' will be set

s_color_SchemaName can also be a name of the field set in set field command

Example:

read sequence s_icmhome + "seqs"
group sequence a
align a
set field a 1 "field1" Random(0., 1., Length(a))
set color a "field1"

See also: color

set comment

set comment [append] os_Object s_comment

set comment ms|rs s_comment
set a text comment string (or a long name) to object, molecule(s) or residue(s). This annotation is
preserved in the read object and write object commands.
Examples:

set family of commands 293

 read object s_icmhome+"crn.ob"
 set comment append a_ "\n The template for modeling\n Energy minimized\n"

 build smiles "CCO"
 set comment a_1 "ethanol"

set comment conf [os] s_comment i_conf

sets a comment string to the stack's conformation.

Example:

build string "ASD"
store conf a_
set comment conf a_ 1 "initial conf"

See also: Name conf store conf

See also: set comment s_alterSymbol as , Namex function

set a flag of an alternative atom position

set comment s_charAlterSymbol as_alterAtoms
set alternative status to the selected atoms (e.g. set comment a_//Aa " " ,to clear the
alternative flag). The alternative flag can be read from a pdb file. This flag marks alternative
geometrical positions of atoms which are described in the previous ATOM records. For example,
the same side-chain or a water molecule can occupy several positions. The symbol of alternative
position (usually 'a','b' or 'c' character, since ICM converts the strings to low case) precedes the
residue name field. The alternative positions can also be selected with the a_//A alterChar
selection.
Example:

 read pdb "1cbn" # has alternative positions
 show a_//Ab # show alternative pos. 'b'
 set comment a_//Aa "x" # rename 'a' positions to 'x'

example in which we delete all secondary alternatives and
clear the alternative-flag from the main alternative

 read pdb "1hyt"
 set comment a_//Aa " " # cleared the main alternative
 delete a_//A # delete atoms with any alter-symbols, eg b,c,2,3 etc.

set comment to a sequence

set comment [append] seq s_comment
set comment to a sequence. This sequence comment can be extracted with the Namex(seq)
command.
Example:

 a=Sequence("AFSGDHAGSFDSGAHGSDFASGDA")
 set comment a "a random test sequence"

See also: SEQUENCE.restoreOrigNames

set comp_matrix: redefine residue comparison matrix.

set comp_matrix [add] r_increment [s_ijPattern]
change the numbers in the residue comparison matrix, called comp_matrix by a
number typically between 0. and 0.2. This may be very important for generating a reasonable
alignment for sequences with low sequence similarity. The result is similar to reducing the
gapOpen parameter by about 0.1.
Examples:

 set comp_matrix add 0.05 # try to Align() again
 set comp_matrix 10. "CC" # make C-C alignment really important
 set comp_matrix add 1. "[KR][KR]"
 # downweight alignment of Gly against

294 set family of commands

 # all the residues
 set comp_matrix add -.4 "G?"
 set comp_matrix 0. "[AGS][AGSLI]"

set directory

set directory s_newDirectory
change the current working directory from inside the icm-shell. We recommend using: alias
cd set directory "$1" . In this case you can change directory in the Unix/DOS style.
Example:

 make directory "/usr/tmp" # create a new directory
 set directory "/usr/tmp"
 cd .. # uses alias from _aliases.
cd .. is equivalent to set directory ".."
 show Path(directory)

See also: make directory, delete directory, Path(directory)

set drestraint

Set a distance restraint between two atoms, or two equal size array of atoms

set drestraint as_atom1 as_atom2 i_DrestraintType | R3_low_upper_weight

Set a distance restraint from interatomic distances

set drestraint distpairs [os_ICM] [i_cntype] [only] [find [edit]] [l_info=no]

Distances (connections) between two atoms (see distance) can be established from the
interface or make distance command pairs of atoms can be created with a make distance
command. The convenience of this command is that this object can be easily created interactively
and drestraints can be directly created based on the atom pairs of this distance-object.

Prerequisites:

an ICM object for distance restraints (note that drestraints could only be implsed
between atoms of the same ICM object)

♦

a distance object (you can find it in the ICM with the list parray command,
usually the collection of distances is called distpairs)

♦

the distances do not need to be between the atoms of the target ICM object. It is sufficient
that the atoms mentioned in the distpairs object have the same cartesian coordinates as
the target atoms (see the find option).

♦

Arguments and Options:

Argument Default Definition or Comment

distpairs none a set of atom pairs, the current distances are not used, just
the atoms

os_ICM current object of
ICM type this object must contain

i_cntype
commands finds a type
for a close contact
between the two atoms

drestraint type defining its parameters. Use show
drestraint type to see the predefined types, set a
new type if necessary.

R3_lw_up_wt sets simple typeless
harmonic drestraints

Alternative to the i_cntype . Example: 0.//0.//1. or
0.//3.//10.

only|
delete all drestraints
that previously existed
in the object

find [edit]
finds atoms in the specified target object or current object
with the same coordinates as the distpairs atoms. With the
edit option ICM requires the source atoms to be
between ligand and receptor.

l_info=no

set family of commands 295

current value in the
shell

to suppress the output, you may also use l_warn=no to
suppress warnings

ActionIdentifies atoms in the distance object, finds the same atoms in the os_ICM (option find)
or uses only atom pairs in a_*.LIG molecule and a_REC. object and sets a distance restraint
between them. If the type is not specified with the i_cntype parameters, the type is found
automatically achieve a van der Waals contact between two atoms in question.
Output

the drestraints♦
i_out returns the number of restraints imposed♦

Option all . Set a distance restraint between two groups of atoms (NMR)

set drestraint all as_atomGroup1 as_atomGroup2 i_DrestraintType
sets distance restraints of specified type between selected sets. Drestraint types (integer numbers)
can be either read from a *.cnt type file or set directly by the set drestraint type
command and shown by the show drestraint type command.

Setting NMR-style group restraints and with R-6 averaging.

Suppose that you have an NMR restraint (with weight 10., and bounds 3. and 4.) between
hydrogens belonging to a group, e.g. hb1,hb2 or hb3 of alanine2 and ha1 or ha2 of a glycine10. In
this case you can use these commands:

read object s_icmhome+"crn.ob"
set drestraint type 1 10. 3. 4.
set drestraint all a_/2/hb* a_/10/ha* 1 # type 1
 # Info> one multicenter (3x2) dist. restraint imposed
show energy "cn" # gives you the penalty value
set terms "cn"
minimize # minimizes the multi-center restraint

Option all allows you to generate a multicenter restraint. Later, the penalty of this restraint will
be calculated by finding an averaging the inverse six powers of all possible cross-distances
between the two groups.

Two methods for averaging are available, see the cnMethodAverage preference.
Important: Drestraints can only be imposed on real atoms, the virtual atoms such as vt1,--vt2
are ignored in the cn calculation, therefore the set drestraint a_1//vt1 a_2//vt2 5
command is INCORRECT.
Examples:

 set drestraint a_/15/ca a_/18/ca 5 # distance restraint of type 5

 set drestraint type 2. 4. 5.; set drestraint i_2out a_/15/ca a_/18/ca
 # define new type (i_2out) and set it

set drestraint type

set drestraint type [i_DrestraintTypeNumber] r_WeightingFactor r_LowerBound
r_UpperBound [local r_Sharpness]
creates a distance restraints type. Drestraint types (integer numbers) can also be read
from a *.cnt type file and command and shown by the show drestraint type command.

If the type number is not specified, it is set automatically and returned in i_2out .
Examples:

type 11, weight 10., bounds [1.,3.]A
 set drestraint type 11 10. 1. 3.

local type, sharpness 5.
 set drestraint type 12 10. 1. 3. local 5.

automated type
 set drestraint type 10. 1. 3. local 5. # returns in i_2out
 set drestraint i_2out a_/2/ca a_/4/ca

296 set family of commands

set group column

set group column tableColumn [off]

this command is applied to a sorted column in a table changes the view of a table. All the rows
with identical cell values for this column are merged into families and the right arrow click is
enabled to rotate over the the family members. Use option off to disable this mode.

Example:

group table t {1 2 2 3 3 3} {1.1 2.2 3.3 4.4 5.5 6.6}
set group column t.A # watch the result in GUI, use arrows

set hydrogen : re-calculating coordinates of hydrogens from the
connected heavy atoms

set hydrogen [as]

This command does not create hydrogens, it takes the existing hydrogens and re-calculates their
cartesian coordinates from the corresponding heavy atoms.

Warnings: the hydrogen placement by this command is not optimized (see minimize
cartesian). The previously optimized positions of hydrogens may be moved to sub-optimal
positions by this command. This command is best used to create reasonable initial positions for
hydrogens after the heavy atom coordinates are re-set.

See also: set atom , build hydrogen .

set site

set site [only] seq I_positions s_siteString [type="SITE"]

set site [only] seq s_swissprotSiteString

set-site [only] {ms|seq} [seq_from [ali]]

set-site [only] ms swiss # find a_P uniprot parent sequences and use them

set site [only] [display] rs s_siteString [label=0-4] [type="SITE"]

set site distance ms [r_siteArrowLength (0.)]
set site to with the specified positions and comment. The default action is append . Option only
erases all site information before setting a new one.

If the string is specified, create a new site according to the provided legal site string s_siteString
(e.g. "FT ACT_SITE 15 15 Catalytic residue"). The format of the site string is the same as in the
swissprot sequence entries. The list of legal site types is given in the Glossary.
The site residues in objects can be delete with the delete site command and selected with the
a_/F SiteCodes selection, (e.g. a_/FAB selects residues involved in binging and active site).

Option label= sets local SITE.labelStyle . Value 0 means 'unset'.

The distance option allows one to set the length of the site arrow. The default is zero. Caution: the
set site distance command will re-set all site arrow lengths in a current molecule.

Example:

 read sequence s_icmhome+"s.seq"
 set site sss "FT ACT_SITE 15 15 active site residue"
 set site sss {10,15,16,17} "Site1: active site"
 # the residues of this site can be selected as a_/F"Site1*"
#
 read pdb "2abx"
 readUniprot "NXL1A_BUNMU"
 set a_a swiss "NXL1A_BUNMU"
 set site a_P swiss

set family of commands 297

See also: copy site, delete site, showsite{show site} and color site.

set site alignment

set site ali {icol(1) [,jseq(1), [,ncol(1),[nseq]]]} [column[=I_cols]] [comment=s]
[type='SHADE'|'BOX'|'FNT'|'FNT_BLD'|'REGION'] [color=..]

annotates a region in the alignment.

Example:

 set site alig column={4,5,6,7,8} type="REGION" comment="text" # sets upper region annotation for columns 4-8
 set site alig {10,2,5,5} type="BOX" color=red # draw the box at row=2, col=10 size=5x5 border color red

Example (annotate binding sites)

 read binary s_icmhome + "example_alignment.icb"
 set site alig column=Index(alig, Sphere(a_H [1] a_A 4.)) type="BOX" color=red

See also: delete site alignment

copy site

copy site [only] { seq_to | ms_to } seq_from [ali]
transfer (or reassign) sites from a sequence or string to a destination sequence seq_to or a
selection of molecules ms_to . Sites are listed in feature tables of swissprot entries and
are read by the read sequence swiss command.
If alignment is not provided, the sequences will be automatically aligned to find residue-residue
correspondences and the reliability of the alignment will be reported. If the source of sites is not
provided the sites will be transferred from the sequences linked to objects. The list of sites and
their one-letter codes is given below. Normally this command appends to the list of existing sites,
unless the only option is given in which case the old sites are dismissed.

The effort is made to avoid repetition and retain only the unique set of sites. Identical site will not
be added, e.g. simply repeating the same copy site command will not duplicate the number of
sites.

Example:

 readUniprot "PIM1_HUMAN"
 read pdb "1xws"
 make sequence a_1.1
 a=Align(PIM1_HUMAN,1xws_a)
 copy site PIM1_HUMAN 1xws_a
 Info> 8 sites (i_out) appended to 1xws_a
 copy site PIM1_HUMAN 1xws_a # repeat
 Info> 0 sites (i_out) appended to 1xws_a

See also:

site♦
set site♦
show site♦
SITE.appendStyle ("none" or "merge source")♦

set site to a residue selection

set site [only] rs s_sideString
assign sites to a molecular 3D object (simpler than the previous Swissprot-like definition).
Example:

 read object s_icmhome+ "crn.ob"
 set site a_/10:13 "candidates for mutagenesis"

298 set family of commands

set slide

set slide name slideArray s_oldname s_newname

Rename object names referenced in a slide array. Useful when an object is renamed after making a
slide.

Example

nice "1crn"
add slide
rename a_1crn. "crambin"
display slide index=1
set slide name slideshow.slides "1crn" "crambin"
display slide index=1

See also: slide

set tautomer

set tautomer ms i_tau

set tautomer rs_his i_tau_1_or_2 | "hid" |"hie" |"hip"

switches between different tautomers of small molecules ms or histidine rs_his by relative
tautomer number or histidine tautomer name. The states and necessary hydrogens are built/set by
the build tautomer command.

Example:

build string "AHW"
build tautomer a_/his # adds a hydrogen and hydrogen masks to allow the switching
set tautomer a_/his 2

See also: build tautomer

set texture

set texture grob imageArray

updates textures used in the grob. Textures should be in the order provided by the Image
command. Common usage would be: get textures, modify them in ICM, and assign them back to
grob.

See also: Image

Example:

read grob "g.obj"
I = Image(g texture)
I = Image(I 256 256) # rescale all images
set texture g I # update images used for textures

set error

set error

sets the icm-shell error flag. The flag is returned (and cleared) with the Error() function.
Example:

if Nof(Getarg(name))==0 set error
a=Getarg("t",2)
if Error() then
 print "Help"
endif

set family of commands 299

set field by number or name

Each object, molecule, residue or atom have a place to store numbers. This place is called a
field and has a reference number. In addition, atoms have named fields that can store numbers
or text. Also, user fields can be stored in sequence alignments (see the last section of this page)

Setting a named field in molecular objects

set field name= s_fieldName as|rs|ms|os { r|i|s_FieldValue | R|I|S_arrayOfValues }

See the description below , as well as the Field and Select functions.

Setting field in molecular objects by number

set field as|rs|ms|os { r_FieldValue | R_arrayOfValues } [number= i_fieldNumber]
set field clear as|rs|ms|os [number= i_fieldNumber]
set user-defined values to atoms, residues, molecules or objects selected. Atoms have one
user-field, residues have three, molecules and objects have sixteen. To specify which field you
need to set, use the number= option.
To extract the property use Field (selection, i_fieldNumber) function.

Level Max.Nof_fields example
Atom 1 set field a_//c* Mass(a_//c*)
Residue 3 set field a_/trp 1. number=2

Molecule 16 set field a_W Random(1.,10.,Nof(a_W))
number=12

Object 16 set field a_*. Rarray(Count(Nof(a_*.)))

User defined fields can further be 2D or 3D averaged with the Smooth function and selected by
with the Select function.

Setting a field in an alignment

set field ali i_vectorNumber [R_aliPosValues] [s_name]

Stores rarray of values for each position of the alignment into field i_vectorNumber (an integer
from 1 to 3) of the alignment. Each alignment has 3 reserved vectors. These values can be used in
set color alignment command.

The R_aliPosValues can be calculated set for each position of the alignment or assigned from
sequences via the Rarray(ali seq R_prop) projection function.

See example in set color alignment See also: set field as name= s

set atomic field from a map

set field map [as] [name=s_field_name]

sets the interpolated value from a map to an atom according to the coordinates of its center.
Example:

loadEDS "3pah" 0. # loads m_3pah crystallographic 2Fo-Fc map for epinephrine
read pdb "3pah"
set field m_3pah
set field a_// name="eds" Field(a_//)
display
set label atom a_// Sarray(Iarray(100.*Field(a_//)))
display ball Select(a_// "eds<0.4")
center a_aale

set named field

set field name=s_name as|rs|ms|os { i_value|r_value|s_value|I_values|R_values|S_values }

Example:

300 set family of commands

set field a_//o* name="Occ" Occupancy(a_//o*)
Field(a_//o* "Occ")
Name(a_// field) # returns {"Occ"}

This field can be manipulated with the following commands and functions

Field (as | rs | ms | os s_tag) returns the field value♦
Select(as | rs | ms | os s_tag) returns the atoms for which the field is set♦
Select(as | rs | ms | os s_tag_condition) returns the atoms/residues/molecules/objects
for which the field is set and the condition is met

♦

delete field [as | rs ..] s_tag deletes the field from some atoms or all the atoms by
default

♦

Name(as | rs | ms | os field) returns a unique list of assigned tag names at the
appropriate selection level

♦

Example 1:

 build string "ala"
 set field name="my" a_//c* Count(Nof(a_//c*)) # set values 1,2,3,.. to carbons
 Select(a_// "my")
 Select(a_// "my==1")
 delete field name="my"

Named fields with text

build string "AHW"
set field name="na" a_//n*,c* Name(a_//n*,c*) # store some atom names in field named "na"
show Field(a_//n*,c* "na") # returns the value
Select(a_// "na") # select atoms with that field set, namely n*,c*
Select(a_// "na==n") # select atoms with that field equal to "n"
Select(a_// "na~ca*") # fuzzy comparison
Select(a_// "na~c*")

Action upon double clicking an atom .

An action can be assigned to a field with a fixed name doubleClick . The atom selection for
the action should be coded as dollar-1 ($1). A simple action can be just like that:

set field a_// "display cpk $1" name="doubleClick"

A toggle can also be easily implemented with a few ICM commands. Example in chick double
click toggles the display of bfactors and non-standard occupancies:

a1 = "atomLabelStyle=8; if Nof($1 & a_*.//DA)==0 then; display atom label $1 ; else; undisplay label $1; endif"
set field a_// a1 name="doubleClick"

It may be move convenient to write the toggle expression in a macro, e.g.

macro toggleBfactorDisplay as_
 atomLabelStyle=8
 if Nof(as_ & a_*.//DA)==0 then
 display atom label as_
 else
 undisplay label as_
 endif
endmacro

and them use the macro in

set field a_// "toggleBfactorDisplay $1" name="doubleClick"

set font

set font [{ atom | residue | variable }] [auxiliary] [bold] [italic] [
underline] size=i_Size font=s_FontName

set current font for atom-, residue-, variable-, or string- labels in the graphics window. Strings can
be displayed in either their main font or the auxiliary one (option auxiliary). The following
fonts: times, helvetica, courier and symbol, should be available. Default fonts are defined in the
icm.clr file.

Examples:

set family of commands 301

 set font 28 times # 'Times' font, size 28

 build string "se his"
 atomLabelStyle="[C]"
 display wire atom label
 set font atom 14 bold # for atom labels

 set font auxiliary bold italic symbol 28

specifying the font in ICM

A few ICM commands use similar parameters to specify the font used in graphics window:

[bold] [italic] [underline] size=i_Size font=s_FontName

Font families supported by the font option:

"mono", "courier" a standard monospace font
"serif", "times" a standard serif font
"sans", "arial", "helvetica" a standard sans serif font
"symbol" font with special symbols and Greek letters
See also: set font, set font grob, set label 3d label, display string.

set font of a 3D label

set font g_label [font_spec] [color_spec]

sets/resets font for a particular 3D label (technically it is a grob with a single point and associated
text).

See font specification format and color format for explanation of the font_spec
and color_spec parameters.

Example:

#label3d = Grob("label",Mean(Xyz(a_/3,4)),"3D label for res 3,4")
label3d = Grob("label", {0. 0. 0.}, "HELLO WORLD!")
set font label3d font="times" size=36 rgb="#00ffdd"
display label3d
select edit label3d # makes it movable, press Esc to get rid of the cursor

Make an alignment , an html document, or a table active.

set foreground s_htmlVarName | aliName | tableName

Bring the specified GUI panel for the foreground, i.e. make an alignment , an html document, or a
table active.

Examples:

set foreground s_html s_anchor
set foreground ali
set foreground tab

set foreground center {table|html|alignment|graphic}

Brings the specified class of GUI objects into the central part of the main window

Example:

display new # creates an empty 3D window
add column t {1 2 3 } # creates a table
set foreground center table # moves table pane to the center

See also: Name(foreground table|alignment|html) to get the names of those shell
objects

302 set family of commands

set format for a table column

set format I|R|S|P_column [i_width] [s_format|html|web] [function=s] [filter=s]
[name=s_cname] [color=s] [show [off]]

set format T_table ..same args and action on ALL COLumns.. [table|view|grid] [show
[off]]

set format I|R|S|P_column k_collectionFormat # eg .. t.A Collection(t.B format)

Set various display and auto-calculation properties for table column or all columns of a table. All
the set fields can also be extracted into a single collection with named members, modified and
reset back to a table of table columns.

width - column width in pixels♦
s_format - string containing html tags formating for the column cell. Use %1 for
reference to a cell value. E.g: "%1" display values as bold. For real values the number of
digits can be adjusted using "%.n[fge]" format. Where n is precision, 'f' - decimal
notation, 'g' - exponent notation, 'g' - mixed. E.g: "%.2f" - two digits after dot. The
s_format string may contain internal ICM html links (see gui programming} which
allows one to bind any custom action to them.

♦

name=s_displayName use custom name as column name on GUI♦
color=s_colorSpec a conditional expression which can used for custom cell
coloring. (see example below) The expression has the following syntax: condition ?
result_if_true : result_if_false result_if_true and
result_if_false themselves can contain conditions (be recursive) The condition
may use number and string constants as well table column names. E.g: MW < 100 The
returned values should be a string containing either name of the color ('lightred') or html
hex notation ('#BAFFBA')

option rainbow=color1[/color2...][,from:to] (e.g. set format t.A
color="rainbow='red/white/blue,100:150,linear/0:0/0.7:0.5/1.:1'"

◊

♦

show off hide column♦
show show hidden column♦
filter=s_columnFilter a conditional expression which is used for row filtering.
(see example below)

♦

Example:

add column t Chemical({ "CCC", "CCO" })
add column t Mass(t.mol) name="MW"
set format t.MW "<p align=right>%.4g</p>"
set format t.mol 150
set format t.MW color = " MW>45 ? 'red' : 'green' "
add an external color column
add column t { "#BAFFBA" "#FFCACA" } name="clr"
set format t.clr off # hide it
set format t.mol color="clr" # color by clr column
set format t.MW show off # hide column

set format t.mol filter="_ ~ 'O'" # show only containing oxygen

The following example show how to bind any custom action to table cells.

create a random table
makeTable Name("t" unique) 10 2 1 0 no yes yes no
set action to simply print cell content
set format t.A "<!--icmscript name=\"1\"\n print %@.%^[%#]\n-->%1"
bind a simple dialog and action.
set format t.B "<!--icmscript name=\"1\"\n#dialog{\"AAA\"}\n# i_n (1|2|3)\n print %@.%^[%#], $1\n-->%1"

See also:

set property column♦
Collection (t| col format)♦
show-formatt|~~col♦

set family of commands 303

set grob coordinates and string label

set g_grobName M_Xyz

set g_grobName [append] s_Label

set g_grobName reverse # reverse grob normals so that the light is from inside.

set grob selection reverse

set grob selection [append] s_Label
Set new coordinates to the vertexes of the specified graphics object. The matrix dimensions
should correspond to the number of vertices. The initial coordinate matrix can be extracted with
the Xyz (grob) function.

 read grob s_icmhome+"beethoven" # try stravinsky if you want
 display beethoven
 display "DESTRUCTION OF CLASSICAL MUSIC"
 xyz= Xyz(beethoven)
 fuzz = Random(-0.2,0.2,Nof(xyz),Length(xyz))
 xyz = xyz + fuzz
 set beethoven xyz
 color beethoven Random(Nof(beethoven),3, 0., 1.)

Invert grob normals
set grob [selection] reverse
change direction of vertex plane normals in all grobs to change direction of lighting and sign of
the Volume function. If option selection is specified only the GUI-selected grobs are
processed.
set g_grobName1 g_grobName2 .. reverse # obsolete. Now 'grob select'
change direction of normals in specified grobs. In some simple grobs the order of vertices defines
the normal implicitly. In this case the order is changed.
An example in which we contour a density map, split the grob into outer shell and cavities and
measure their volumes:

 read pdb "1est.m/"
 make map potential 1. Box(a_)
 make grob m_atoms 0.2 exact solid
 split g_atoms
 set grob reverse # invert normals of all grobs
 Volume(g_atoms1) # outer shell is now illuminated from inside
 Volume(g_atoms2) # cavities have now positive volume.

set key

set key s_keyName s_Command
binds key to a command. Allowed keys: F1, .. F12, Ctrl-F1, .. Ctrl-F12, Ctrl-A, ...
Ctrl-Z, Alt-A, ... Alt-Z. Add "\n" at the end if you want your command to be
automatically executed.
Examples:

 set key "F10" "set plane 1"
 set key "Ctrl-B" "l_easyRotate=!l_easyRotate"
 set key "F11" "varLabelStyle=\"nextItem\"\n"

set label

set label as_atomForResidueLabels
assign residue labels to the selected atoms as_atomForResidueLabels . The atoms at which the
labels are displayed can be returned with the L selection in the atom field, e.g. a_a.b/10:24/L .
Examples:

 build string "se trp ser ala tyr"
 set label a_/tyr/cb # move label from Ca's to Cb's for all tyrosines

304 set family of commands

set label distance

set [residue] label distance rs [{ R_3displVector | M_displMatrix }]
reset the relative displacements of the selected residue labels rs_ to their default of the specified
positions. If vector is specified, all the relative displacements are set to this vector, if a relative
displacement matrix Nx3 is given, each selected label is moved to the specified relative position.
The default position is the relative displacement of {0. 0. 0.} from the residue label carrying atom
(usually the Ca atom for peptides, also see the set label as_ command). See also:
GRAPHICS.resLabelDrag
Examples:

 build string "YYEAH"
 set label a_/tyr/cb # move label from Ca's to Cb's for all tyrosines
 display a_* residue label
 GRAPHICS.resLabelDrag=yes # now drag labels with the MiddleMB
 set label distance a_/2:4 # reset labels for residues 2:5
 set label distance a_/2:4 {1. 0. 3.}

set labels for table rows

set label T_table i_label [index=I_indices]

Assigns to table rows. Row labels are used to highlight table rows in GUI and for scripting
purposes.

Example:

 group table t {1 2 3} "A"
 set label t 1 index={1,3}
 Label(t)

See also: Label Index table label

set labels for 2D chemicals

set label chemarray [S_labels|s_label] [color=s_color] [distance=r_dist]
[index=I_]

Assigns annotation (sites) for selected atoms in 2D chemical spreadsheets. Atom selection can be
done using select chemical command.

Example:

 add column t Chemical("COc1cc(C=C2C(N(CC(O)=O)C(=S)S2)=O)ccc1OCc1ccc(cc1[Cl])[Cl]")
 select chemical t.mol filter="AtomNum==1"
 set label t.mol "First Atom"
 select chemical t.mol filter="AtomNum==2"
 set label t.mol "Second Atom"

 select chemical t.mol "C(=O)[O;H]"
 set label t.mol "Carboxy" color="red" distance=1.5

 select chemical t.mol off

See also: select chemical delete label chemical

set label for 3D labels

set label 3Dlabel [selection] [s_text] [color_spec] [font_spec]

change the text label properties for a 3Dlabel object . Changes will be only applied to the
selected labels in 3Dlabel if the selection keyword is used.

This command may change:

the label text s_text ;♦
label color color_spec ;♦

set family of commands 305

label font properties font_spec .♦

set the current map

set map m_theMapYouWantToWorkWith
assigns the current map status to the specified map.

set the current Molcart connection

set molcart connect=s_connectionID

Sets the Molcart connection to be the current.

set molcart database s_dbname

Sets the current Molcart database to s_dbname.

See also: molcart, molcart connection options, connect molcart

setting names to chemical compounds in an array or a table

set name chem_array { S_names | s_name } [[index=]{i_index|I_index}]

assigns specified names to each element of the chem_array . This names can be extracted with the
Name(chem_array) function. Example:

read table mol "drugs.sdf"
set name drugs 2 "aspirin"
set name drugs.mol {2,25} {"aspirin","cocaine"}
#
n=Nof(drugs)
set name drugs.mol Sarray(n,"drug")+Count(n)
set name drugs.mol drugs.synonim

In the chemical tables there is a special column 'NAME_' to acceess chemical names. Normally
this column is created automatically created upon reading an .sdf file. You can sort, search in
the column. All modifications made the 'NAME_' column will be automatically synchronized with
chemical names (and vice-versa)

However, if the _NAME column is created manually, to convert it into a legitimate and
synchronizeable name of a chemical one needs to use the set name command.

Example:

read table mol "t.sdf" name="t" # NAME_ is created automatically. It will be synchronized.
t.NAME_[1] = "aspirin"
print Name(t.mol[1])

setting names to chemical compounds in an array or a table

set name seqarray { S_names | s_name }

Assigns names to elements of sequence parray. If array of names S_names is specified, it
should have the same size as the sequence array.

Setting the current object

set object [os_newObj] [stack]
assigns the current object status to the specified object. Switches to the next one by default.

Option stack means that the in-object-stack will be extracted from the object into the shell. It is
equivalent to the load stack object command.

Examples:

306 set family of commands

 set object a_crn. # set it to object crn
 set object a_1. # set it to the first object
 set object # switch to the next or alternative
 set object a_2. stack # switch and extract its built-in stack

See also: set type os_ s_type .

set occupancy

set occupancy as_select r_NewOccupancy
sets occupancy of selected atoms to or by a specified real value between 0.0 and 1.0
Examples:

 set occupancy a_/2:5/!ca,c,n,o 0.5

 set occupancy a_/2:18/ca,c,n 1.

set plane

set plane [move] [i_plane] [{ off | on }] [name= s_planeName]
toggles the specified graphics plane on and off. Up to seven planes can be set. Optional name is
assigned to a plane. It is a convenient way to operate with complex composite images. Every
image is assigned to a certain graphical "plane" when displayed. Different parts of the image can
be assigned to different planes. For example, plane 1 may contain wire representation of
molecule1, plane 2 its molecular surface ("surface") and plane 3 molecule2 in "xstick"
representation. It can be achieved by pressing "F2" and "F3" (which are aliased to set plane 2
and set plane 3, respectively) before displaying surface and xstick respectively. Now by pressing
"F1" , "F2" and "F3" one can toggle these three screens (or planes) to display any combination of
them. It is much better than undisplaying and displaying them directly, especially for
representations requiring serious computations like surface and skin . The main modes of the
set plane command:

set plane 2 : if plane2 is 'off', make current and switch it 'on'; if it is 'on', switch it off.♦
set plane 3 on : switch the plane on, but do not change the current plane♦
set plane 4 name="homologue" : just assign name to the plane, no switching♦

Examples:

 build string "se ala ala" # create a peptide
 set plane 2 # F2 with the cursor in the graphics window
 display surface
 set plane 3 # F3 with the cursor in the graphics window
 display xstick
 set plane 2 # switch off the surface
 set plane 2 # switch the surface back on
 set plane 3 # switch off the xstick
 set plane 3 # switch the xstick back on

set pmf

set pmf I_icmTypes [energy=r_eDepth(-10.)] [margin=r_maxDist(8.)]
[function=i_power(2)] [delete]

this command sets the specified potential with the r_eDepth value at distance = 0. and 0. at
distances beyond ~r_maxDist for the iIcmType : iIcmType interactions for the types specified in
the I_icmTypes array. The functional dependence is defined by the function argument (the
default is a quadratic function). The function is:

E = r_eDepth *(1. - x/r_maxDist) ^ i_power

For example if you want atoms of type 8 to attract each with a constant force (and linear
dependence of the energy as a function of distance) use this:

set pmf {8} function=1 delete

Arguments and options:

set family of commands 307

I_icmTypes the pmf force field will be assigned between pairs of atoms of the same type
from the specified list. We usually prefer to use unused hydrogen types such as
7,8,9,28,29,32:40,44:48 . This will still make the artificial atoms visible (in contrast to
the virtual atoms) and will not affect any of the "real" atoms. Use set type as iType
command to set the artificial types Check the icm.cod file for the available types.

♦

delete : makes sure that the specified types do not interact as van der Waals spheres,
and incapacitates those atom types. See the suggested types above.

♦

energy = r_eDepth . see formulat above. The value of energy when two atoms of
specified type are at the zero distance

♦

function = i_power . The exponent of the functional dependence above.♦
margin = r_maxDist . The interatomic distance at which the "mf" term becomes zero.♦

Example:

build smiles "C1=CC=CC=C1.C1CCCC1"
set type a_//h?1 8
set type a_//h?2 9
set pmf {8,9} margin=6. energy=-5. function=3 delete
display
color a_//C8 green
color a_//C9 magenta
show energy "vw,mf"

See also:

pmf♦
show pmf♦
read pmf file # e.g. ident.pnf in s_icmhome♦

set property

set property [only] [on | off] icmShellObject1 .. prop1 prop2 ..
ICM shell objects of the following types: integers, reals, strings, sequences, alignments, profiles,
maps, matrices, tables, grobs, iarrays, rarrays, sarrays have an array of property elements. This
elements can be set to on and off from the shell the they influence visibility, edit-property and
some other properties of a variable in the GUI environment.
Allowed property elements:

bit_name description
command s indicates that the string contains ICM commands and is a script
delete protects from the delete command
display
T_ activates table actions such as double click, cursor and lock

field T_ makes the content of individual cells of a table un-editable
factor T_ indicates that the table is a table of structure factors

html s_ indicates that the string is an HTML document. It may contain internal links to
scripts, images and slides

show makes object name invisible in the Workspace, is off for system variables

write indicated that object will be written in write binary all command. This
option is 'on' by default.

smiles indicated that elements of an sarray will be treated as smiles string and depicted
on-the-fly in the table.

Option only resets the property mask to 0 before setting the specified bits. Example:

ii = {1 2 2 3}
group table t {1 2 3} "a" {3.3 3.3 4.4} "b"
set property t only # clean up
set property t ii write delete field off # protect the content

More examples:

s2 = "read pdb \"1crn\" delete\ndisplay ribbon yellow\n"
set property command s2 # s2 will appear in Workspace

308 set family of commands

set table column options

set property T_column {fix|field|new|plot|show} [off] [only]

field allows one to edit cells♦
fix freezes a column to always keep in sight during horizontal scrolling through a large
number of columns

♦

new marks a column as having a new content (a flag to update a view)♦
plot : converts cell-vectors into in-cell plots (e.g. add column t Matrix(3);
set property plot t.A)

♦

show off : hides a column♦

See also: set property chemical view, set format

set chemical view options

set property chemical view chemicalColumn s_chemicalProperies [only] [off]

sets various chemical view options for the molecular column of the ICM table.

Each character in s_chemicalProperies codes single chemical view option.

"H" : Hetero-atom hydrogens♦
"T" : Terminal hydrogens♦
"S" : Atom stereo labels♦
"X" : Do not show explicit hydrogens♦
"A" : Aromatic rings"♦
"C" : Show 'chiral/racemic' flag♦
"3" : Do not show 3D as 2D♦
"U" : Unique atom classes♦
"N" : Atom numbers♦
"M" : Monochrome atom labels♦
"W" : Don't show atom text labels. Colors half of the atom's adjustment bond with the
element color (Like wire in 3D)

♦

"R" : Don't show atom text labels. Draw color square instead.♦
Example

add column t Chemical("CC(=O)OC(C=CC=C1)=C1C(O)=O")
set property chemical view t.mol "HM" # monochrome labels + hetero atom hydrogens
set property chemical view t.mol "M" off # turn off monochrome
set property chemical view t.mol "A" # turn on aromatic ring view

set alignment view options

set property alig i_mask [only] [off]

sets various view properties for the alignment:

512 : do not show consensus line♦
1024 : display tree♦
2048 : show alignment profile♦
8192 : do not show sequence offset♦
65536 : do not show alignment body. Useful if you want to export profile only.♦
524288 : show ruler♦

Multiple values can be combined used + operator.

Example:

set property myAlig 2048+65536 # show profile only

set randomize : reset the randomSeed

set randomize i_NewRandomSeed
resets the random seed to the new value. If you run any procedure or function for the first time, it
will show you the value of randomSeed . This value can be reset at any time later with the

set family of commands 309

above command.
Example:

Random(1,10)
 Info> randomSeed = 1055822291
 4

set randomize 1055822291
Random(1,10)
 4

set resolution

set resolution os { r | R_NewResolutions }

set resolution of selected objects to a specified real value or individual values from the
R_NewResolution array. To assign individual resolution, provide a real array with resolutions for
each object.

Example:

read pdb "1crn"
print Resolution(a_)[1]
set resolution a_ 9.9
print Resolution(a_)[1]

See also: Resolution

set stereo

set stereo [i_plane] [{ off | on }] [name= s_planeName]
this command allows one to reset the stereo mode from a command line or scripts. See also:
GRAPHICS.stereoMode
set sstructure backbone

set rs s_SecStructPattern
assign the specified local secondary structure to the selected residues of an ICM-type object. Note
that this command changes the conformation of the selected residues, in contrast to the command
assign sstructure .

The s_SecStructPattern string (e.g. "HHH___EEE") can be shorter than the number of selected
residues. In this case the pattern will be applied multiple times. For example:

set a_/A "E" # will set all residues to an extended conformation

The phi,psi angle values are changed according to the following code:

ss_code phi,psi angles description
_ -179.9,179.9 extended conformation
E -139.0,135.0 antiparallel beta strand
e -119.0,113.0 parallel beta strand
H - 62.0,-41.0 alpha-helix
G - 49.0,-26.0 G-helix (3/10)
I - 57.0,-70.0 I-helix
P - 78.0,149.0 poly-proline 2 helix
L + 57.0,+47.0 Left-Alpha

Examples:

 build string "LLELGQAPGALHRVPLSRRESLRKKLRAQGQLTELWKSQNL"
 display ribbon residue labels
 set a_/2:8 "H" # all 6 residues will be assigned to a helix
 center
 set a_/1:12 "HHHHHH__EEEE"
 center
 set a_/A String("H", Nof(a_/A))
 center

310 set family of commands

 set a_/A String("_", Nof(a_/A))
 center # ONLY UNFIXED PHI,PSI VARIABLES ARE SET, SO pro IS BENT!
 set a_/A String("G", Nof(a_/A))
 center
 set a_/A String("E", Nof(a_/A))
 center

set sstructure to sequence

set sstructure seq s_SSstring i_from i_to
set secondary structure s_SSstring to the specified sequence. If s_SSstring is an empty string, the
secondary structure definition is removed.
Examples:

 a=Sequence("LLELGQAPGALHRVPLSRRESLRKKLRAQGQLTELWKSQNL") # 1st seq.
 b=Sequence("PLLEATQIKVPLKKIKSIREVLREKGLLGDFLKNHKPQ") # homologue
 set sstructure a "HHHHHHHHHHH______EEEEEEEE_____HHHHHHHHH__"
 l_showSstructure = yes
 show Align(a b)

set sstructure seqarray S_sstructures

set secondary structure strings S_sstructures to elements of sequence parray. Array sizes
should match.

set stack properties

set stack [os] loop|fast [off]

set stack [os] energy [from to] R_NewEnergies

set stack [os] number [from to] I_nVisits

set stack [os] all [from to] I_nTotalVisits

resets stack display parameters, energy values, or number of visits, or total number of visits, for
conformations stored in the stack . If the object is specified, the internal object stack is
modified. New energy values may be useful for the subsequent sort stack command.

set stack align [from to]

will set the total visits to 1 and will set the visits to {1,2,3,..}. This setting is convenient since now
the visits can be used as and an ID of a conformation while the total visits at 1 is helpful for future
compression (the compress stack will add up those 'ones' into the total number of
conformations compressed into one bin.

If from and to are not specified, they are assumed to be 1 and Nof(stack) .

The stack display parameters.

loop equivalent to the loop option in the display stack command, it replays the
stack until interrupted with the ICM interrupt.

♦

fast option prevents interpolation between stack conformations (the default is 20
interpolated frames)

♦

See also:

store conf command♦
Nof(stack) function♦
sort stack♦
compress stack♦
compare command♦
display stack♦

set family of commands 311

set swiss

set swiss ms_proteinChains { S_swissprotCodes | s_swissProtCode }
set swissprot name (like IL2_HUMAN) to one or several chains selected by ms_proteinChains .
To clear it just set it to an empty string.

E.g.

build string "AAAAAAA"
set swiss a_ "SILLY_HUMAN"
Name(a_A swiss)[1]
 SILLY_HUMAN

set swiss a_P "" # clear all previously set swiss IDs

Warning: Uniprot/swissprot may change uniprot ids and they become obsolete. Swissprot IDs are
at any given time unique but perishable, while the accession numbers AC are not unique (many
different ACs for the same entry) but permanent.

See also: Name(ms_ swiss) function.

set crystallographic symmetry group

set symmetry os_object R_6cell s_symgroup | i_symgroup [i_NofChains]

set symmetry os s_crysym_card # contains "group N Z a b c alpha beta gamma"
assigns symmetry and cell parameters to selected object(s). The combined crysym record is often
available in exports.

The set of parameters is be compatible with that provided in CRYST1 PDB card:

R_cell should be a 6-component real array, containing values of A, B, C, alpha, beta and
gamma.

♦

s_symgroup is a string description of the space group. To check validity of the
s_symgroup, use the Symgroup(s_symgroup)} function, which will return a number
from 1 to 230 for a valid space group name. Fast Fourier transformations are currently
supported for s_symgroups "P 1" and "P 21 21 21", but all the other commands (make
map cell transform etc.) will work on any space group defined in the
International Tables for Crystallography.

♦

Z-value, the number of polymer chains in a unit cell, is extracted from the last integer
parameter or assigned automatically according to the number of transformations of the
symmetry group.

♦

Examples:

 build string "se ala ala ala" name="z"
 # suppose this is my modified crambin
 set symmetry a_z. { 40.96 18.65 22.52 90.0 90.77 90.0 } "P 21"

set biological symmetry to an object

set symmetry [append] ms R_12N_transformations

sets biological symmetry to selected chains of the object. The biological symmetry is applied to all
the molecules belonging to a certain chain. For that reason it is recommended to use the
molecular selection by chain (e.g. a_Cabc for chains a,b,c) and use the set
chain command if required to assign one chain character to a group of molecules.

By default, the previous biological symmetry will be overwritten. The append option tells the
program to add a new biomolecule record.

Example:

 read pdb "2ins"
 set chain a_a,b,zn "A"
 set symmetry a_CA Transform(a_)[13:24]

312 set family of commands

See also:

makeBioMT macro in the _macro file♦
Nof(os_1 "bio") # number of biomolecules♦
Select(os_1 "bio" i_Biomol) # molecules of i-th biomol.♦
Transform(os_1 "bio" i_Biomol) # transformations♦

set symmetry to a torsion

set symmetry { 1 | 2 | 3 | 6 | exact | heavy | pseudo } vs
assigns rotational symmetry to selected variables. This symmetry will be used to automatically
transform the value of a torsion angle into [-180.0/symmetry , 180.0/symmetry] range.
Options are the following:

exact - impose exact symmetry (methyl groups=3, xi2_phe=2)♦
heavy - impose exact symmetry as if there are no hydrogens♦
pseudo- impose pseudo symmetry (no_hydrogens + xi2(his,asn,gln))♦

set table

set table t_theTableYouWantToWorkWith
assigns the current table status to the specified table (similar to set object os_ to set
the current molecular object).

set energy or penalty terms

set terms [only] [s_termsString]
set energy and/or penalty terms for further energy calculations. Each term has a
two-character abbreviation. The terms are appended to the string unless option only is specified.
The final energy-term string is returned in the s_out string
Examples:

 # vacuum terms, solvation and entropy
 set terms only "vw,14,hb,to,el,sf,en"
 set terms "tz" # add tethers to the list

set selftether

set selftether [as [only]] [tether|R_xyz|M_xyz] # copy x,y,z to selftethers

set selftether delete [as]

sets target coordinates for the specified atoms. These positions then can be used as
selftethers.

Example:

build string "AHW"
set selftether a_//c*
set selftether a_//n* only # clears the previous ones and sets nitrogen selftethers
delete selftether # delete all selftethers in the current object

See also:

selftether♦
delete selftether♦
"ts" term♦
TOOLS.tsToleranceRadius and TOOLS.tsWeight parameters.♦

set tether

set tether [align | ali] [exact] [only] as_atomsToBePulled [as_atomTargets]

set tether residue rs_toBePulled rs_targets # no residue alignment is forced, residues are
equivalenced sequentially

set family of commands 313

set tether P_atompairs [os_ObjToBePulled }
this command sets tethers restraining atoms of ICM-object (selection
as_atomsToBePulled) to corresponding atoms of another object (as_atomTargets).
The as_atomTargets selection may also contain only one atom, in which case all
as_atomsToBePulled will be tethered to a single atom. If the second argument is not specified, all
the as_atomsToBePulled atoms are tethered to the origin (the {0. 0. 0.} point). Option only
signals that all previously imposed tethers must be deleted.

The residue alignment is controlled by the alignment options .

If option residue is specified, it just takes the selected residue pairs in sequential order.

If parray of atom pairs is specified (it can be created with the make distance command or
with the GUI distance tool) the tethers are picked from suitable atom pairs of the specified
P_atompairs object. If the explicit tethered object is not specified, it is assumed to be the
current object .

In a residue pair the only the backbone atoms such as ca,c,n,o,ha,hn are tethered with the
exception of

identical residues: all atoms are tethered♦
F with Y (all but the hydroxyl)♦
D with N♦
E with Q♦

The number of imposed tethers is saved in i_out .
See also: superimpose, alignment options, minimize tether.
Example (try this series of commands in one continuous session):

 build string "se glu ala" # a simple object
 set tether a_/2 # tether to the origin
 display tether wire virtual
 minimize v_//?vt* "tz"

 delete tether
 build string "se gln val" name="gv" # another object
 set tether a_2.//ca,c,n a_1.//ca,c,n exact # tether set to set
 display tether wire a_*. only
 minimize v_//?vt* "tz"

 delete tether
 set tether a_2.//ca,c,n a_1./1/ca # tether to a single atom
 display tether wire
 minimize v_//?vt* "tz"

set tether append: Extending the identified substructure with
neighboring atoms

set tether append [all]

if maximal common chemical substructure was identified using the find molecule command
and tethers were imposed between the matching atoms, the initial set of tethered atoms can be
further propagated into the neighboring atoms. Without option all only suitable hydrogens are
added to the initial match. With the all keyword heavy atoms will also be added. Note, that any
two heavy atoms next to a tethered pair are considered a match and will be paired.

Example:

 build string "H"
 rename a_ "his"
 build string "W"
 find molecule sstructure tether all a_his.//!h* a_//!h*
 set tether append a_ # add single hydrogens
 set tether append all a_ # add heavy neighbors

314 set family of commands

set atom type

set type [mmff] [as { i_type | I_type }]

assigns the specified atom type (see icm.cod or show atom type [mmff]) to the selected
atoms. Both the ICM- and the mmff- atom types may be manually adjusted to correct the
automated set type mmff command.

set type property : contributions of atoms types to the property
grids.

set type "apolar"|"atomic"|"membrane" R_sf_density_values_in_kcal_A2

reset the "atomic solvation" or "apolar" surface based implicit solvation energy
densities.

See also: surfaceMethod preference, icm.hdt file containing the default icm values.
Example:

surfaceMethod = "atomic solvation"
x = { 0.0080,0.0220,-0.0900,-0.2240,-0.1760,-0.0630,-0.0350,-0.2240,-0.0960,-0.1160,\
 -0.0120,-0.0510,0.0080,0.0080,-0.0630,-0.0900,-0.0900,-0.1760,-0.0900,\
 0.0,0.0100,0.0100,0.0100,0.0100,0.0100}
set type "atomic" x

set type property : contributions of atoms types to the property
grids.

set type property R_upToSevenWeights [only] [I_listOfAtomTypes]

This command defines the contribution of the listed atom types to each of up to seven grid maps
named g1 g2 g3 .. . This grid maps will be used by the "gp" energy/penalty term for local or
grobal energy optimization (see show energy , minimize and montecarlo).

Arguments and options

R_upToSevenWeights provides weights of contributions for this atom type to the grids for
the make map potential "gp" command, as well as the maximal contribution that
atoms with those atom types will get in g1, g2, .. etc. The number of elements in this
array determines the number of grids.

♦

I_listOfAtomTypes is an iarray of types, e.g. {100,111,112}, or Count (100,199) for a
range of types.

♦

option only means that for these atom types the weights not covered by the
R_upToSevenWeights array are set to zero.

♦

The types are listed in the icm.cod file. If the I_listOfAtomTypes is not provided, all heavy
atoms will be set to contribute to grids.

Example to set different fields for oxygens (types 50 to 99) and all other atoms:

set type property {1., 0.} Count(50,99) only
set type property {0., 1.} Count(1,49)//Count(100,390)

A better way to set the default types would be to use the setApfTypes macro, e.g.

build smiles "C1NCCCC1"
setApfTypes
make map potential "gp"

To set the weights of energy contributions from the individual g1, g2, .. modify the gpWeights
array of parameters, e.g.

gpWeights = {2., 1. , 0., 3. , 2., 1., 1.}
gpWeight = 3.

The overall contribution ofthe weighted sum can further be weighted with the gpWeightparameter.

set family of commands 315

See also:

make map potential "gp" .. # generating up to seven grid maps.♦
term "gp"♦

see script _chemSuper and _chemAlign .

set object type

set type os s_type

change the type of one of several non-ICM objects. The following types are allowed (two dots
denote the minimal necessary string):

"pharma.." or "ph4" - pharmacophore♦
"ca" - C-alpha models only♦
"xray" or "x-ray"♦
"nmr" - solved by NMR♦
"model" - general, or generated by modeling♦
"electron.." - solved by electron diffraction♦
"fiber.." - solved by fiber diffraction♦
"neutron.." - solved by neutron diffraction♦
"simple" - specialized simple models♦

Example:

build smiles "C1CCCCC1"
strip a_ # can not redefine the ICM type
Type(a_ 2) # check it before
set type a_ "pharmacophore"
Type(a_ 2) # check it after

set molecule type

set type ms s_type

change the type of the selected molecules. The following types are allowed:

"A" - amino (proteins and peptides)♦
"N" - nucleic acids (RNA and DNA)♦
"H" - heteroatoms (most of the chemical compounds)♦
"M" - metals♦
"W" - water♦
"S" - sugars♦
"L" - lipids♦
"R" - radical♦
"U" - unknown♦
"0" - switch to automated type definition from residue types (returned by the Type
function)

♦

These types are frequently used in scripts and macros. The types can be selected, e.g. a_M,W
(metals and waters). Note that function Type(ms_1 2) returns the auto type only.

Example:

read pdb "2ins"
show a_zn1
 5 zn1 1 zn1 2ins H _ # zinc ion on 3-fold crystal axis
set type a_zn1 "U" # here we reset the type to 'unknown'
show a_zn1
 5 zn1 1 zn1 2ins U _ # zinc ion on 3-fold crystal axis

set type sequence

set type [seq | sequence | ali] { protein | nucleotide }
assigns the specified type to the sequence (seq_), all sequences (sequence) or sequences from
the specified alignment or sequence group (ali_). The type can be returned by the Type(seq_)
function.
Example:

316 set family of commands

 aaa = Sequence("AAAAATAAAA")
 set type protein aaa

 read sequence "f.seq" group="tmp"
 set type tmp nucleotide

set type mmff

set type [charge] mmff [os]
automatic assignment of the MMFF atom types for the selected or the current object of any type.
This object can be both ICM-object or a non-ICM object, provided three conditions are satisfied:

the bond types are set correctly1.
the formal charges are set correctly2.
the object is complete and has hydrogens (see the build hydrogen command)3.

This command is a prerequisite for the set charge mmff command (it can also be achieved
with the charge option).

set van der Waals radii

set type "vw radii" I_vwTypes R_vwRadii
reset radii defined in the icm.vwt for I_vwTypes to the R_vwRadii values. The van der Waals
radii are used for the surface calculation in the show surface area
command
set electrostatic radii

set type "vwel radii" I_vwTypes R_vwRadii
reset electrostatic radii marked as vwel defined in the icm.vwt. The electrostatic radii are used in
the boundary element electrostatic calculation.

set 3D view rotation, translation and size

set view R_37ViewVector

set view R_37FinalViewVector nMilliSeconds

set view R_37InitViewVector R_37FinalViewVector nMilliSeconds
sets all the parameters of the graphics window (position, size, zoom, rotation, etc.) according to a
rarray of 37 numbers. If the nMilliSecondsparameter is specified this command makes a smooth
transition between two views. The first view is either the current view or the R_37InitViewVector
view. The final view needs to be specified explicitly.

This array is returned by the View () function and can be created, read and written as an ordinary
real array. Aren't you disappointed that you still do not know the meaning of these parameters? It
is dull, believe me, use the command and take it easy. See also: View, rotate view.
Example:

 read pdb "1crn"
 display a_1crn. ribbon # now move the molecule, resize window ..
 write View() "a.view" # write 37 numbers in a file
 # again: rotate, move/resize the window etc., or quit the session
 read rarray "a.view" # read 37 parameters
 set view a # restore the view

set vrestraint

set vrestraint [energy] rs [s_rsTypeName1 s_rsTypeName2 ...]
sets variable restraints of specified types to the selected residues rs_ . Variable restraint type
names (strings) can be read from a *.rst type file and shown by the show vrestraint
type command. Option energy enforces the "energy" type of vrestraint.
Number of imposed variable restraints is saved in i_out .
Examples:

 set vrestraint a_/* # assign all zones to relevant residues

set family of commands 317

 set vrestraint a_/ala "aa" "ab" # assign alpha and beta zones to all Ala residues

set vrestraint variable

set vrestraint [only] [{ energy | fix }] vs r_1 r_2 [r_3] [R_values] [name=
s_rsName]
impose a set of vrestraints to the specified variables vs_. The zone will be a
multidimensional elliptical well around current values (default), or the specified R_values values,
of the selected variables. The shape of the well in each dimension is a soft square well . Three
types of vrestraints can be imposed, depending on the option:

probability vrestraints (the default). They are marked as "rs" in the icm.rst file.
Probability vrestraints are used in the BPMC procedure to define the distribution of
random steps. The well parameters are as follows:

r_1 : r_relProbability , the relative probability of this vrestraint◊
r_2 : r_wellRadius, the well radius◊

The relative probability is in arbitrary units, it is only important as a relative number in a
group of the vrestraints.

♦

energy: "Energy" vrestraints (marked as "rse" in the icm.rst file). These allow the
formation of the multidimensional wells around groups of variables and are used to softly
restrict the variables to certain zones (see the "rs" energy term). The well parameters
are as follows:

r_1 : r_energyDepth (it must be negative for attractive wells)◊
r_2 : r_fractionFlat◊
r_3 : r_wellRadius◊

Parameter r_fractionFlat (between 0. and 1., default 0.) defines flat fraction of the energy
well for the energy vrestraints. Note: one can create both wells and bumps using
negative and positive values of r_energyDepth, respectively Example:

 build string "se nter ala ala cooh"
 set vrestraint energy v_/3/psi -20., 0.2, 200., # WELL OF DEPTH 20.
 set vrestraint energy v_/3/psi 20., 0.2, 200., # BUMP OF HEIGHT 20.

An example from the _dock2mol.icm script: imposing an individual restraint for the
virtual bond:

 # no penalty for deviations up to 15A
 set vrestraint energy v_2//bvt1 only -50.0 0.5, 30.0

♦

R_values contains target values for each angle in the selection vs_ , e.g. {-120.,60.}, By
default the target values are taken from the current values of the selected variables.

♦

fix: Vrestraints on "fixed" variables (marked as "rsr" in the icm.rst file). These are
used to define switches between different fixed conformations, e.g. alternative
conformations of sugar rings, proline rings, switches between L and D amino-acids etc.
These switches will be tried in the montecarlo procedure if these variables are
included in the set of vs_MC variables but not included in the set of the minimization
vs_min variables. The parameters are defined as follows:

r_1 r_relEnergy, relative energy of a conformer◊
r_2 r_relProbability .◊

The r_relProbability is in arbitrary units as for the probability vrestraints. Example with
L-D transition, through changing the sign of the two phase angles:

 build string "se ala his trp"
 set vrestraint fix V_/3/fha,fcb Value(V_/3/fha,fcb) 0. 1. name="l"
 set vrestraint fix V_/3/fha,fcb -Value(V_/3/fha,fcb) 0. 1. name="d"
 montecarlo V_/3 v_//*

♦

The radius of the vrestraint well (in degrees for angles) is given by the r_wellRadius. Option
only deletes all the previous vrestraints. The name is optional. The names of the "probability"
and "fix" vrestraints are be shown in the output of the montecarlo procedure. The names need
not be unique.
Example: creating a file with equal probability vrestraints around stack conformation angles with
30 deg. radius:

 read stack "f1" # read conformational stack
 for i=1,Nof(conf) # go through all the conformations
 load conf i # load them one by one
 set vrestraint v_/2:5/phi,PSI,xi1 1. 30.
 endfor

 build string "se ala his trp"

318 set family of commands

 set vrestraint v_/2/phi,xi1,xi2 ,{-60.,-60.,120.} 0.5, 45. name="bb"
 set vrestraint v_/2/phi,xi1,xi2 ,{ 60.,-60.,120.} 0.5, 45. name="cc"
 montecarlo v_/2/phi,xi1,xi2

Note that in the command a special PSI torsion specification is used for traditional residue
attribution.

set values of internal coordinates

set vs [add] { r_value | R_arrayOfValues }
sets specified variables to a given value(s) (for angles the value must be in degrees). If rarray
R_arrayOfValues is specified, its values are assigned sequentially to the variables. It the array is
shorter than the selection, the values are applied periodically. Option add means increment by the
specified value rather than set to this value.
Examples:

 read object s_icmhome+"crn.ob"
 set v_//phi -60. # all phi to -60 degrees
 set v_//phi,PSI { -60., -40. } # make sure that the first
 # variable in selection is phi

 set v_/1:8/phi Random(-180.,180.,8) # all different random phis
 set v_/1:8/phi add 2.0 # increase 8 phi angles by 2 degrees

Note that in the second command a special PSI torsion specification is used for traditional residue
attribution.

set positional variables to place a molecule to polyhedral vertices

set vs grid i_vertex i_NofVertices
(order of arguments is important!) sets specified 2 variables (normally a virtual planar angle
and torsion angle) to the values such as to put a molecule in the vertices of tetrahedron
(i_NofVertices=4), octahedron (6), cube (8), icosahedron (12) or dodecahedron (20). Used to
sample uniformly the surface of globular molecules. Values of i_NofVertices other than above are
not allowed. The polyhedron is built around the origin. The size of the polyhedron is determined
by v_//bvt1 variable which is a virtual bond length from the origin to the first virtual atom
(vt1) of the two attached to each molecule. To check how polyhedrons are generated look at this
example:

 read object "complex"
 display virtual a_//ca,c,n | a_//vt* only
 color molecule
 set a_1//vt1 # set vt1 of a_1 to its center of mass
 set a_2//vt1 # set vt1 of a_2 to its center of mass
 set v_1//bvt1 0.1 # move a_1 to the origin (0.1 to avoid a singularity)
 set v_2//bvt1 30. # offset a_2
 # this is for a_2 to hop around a_1
 for i=1,20
 set v_2//avt1,fvt1 grid i 20
 endfor
 # this is for a_2 to rotate need the same location on a_1
 for i=1,12
 for j=1,3
 set v_//avt2,tvt3 grid i 12
 set v_//tvt2 j*120.
 endfor
 endfor

set size and position of ICM graphics window

set window [i_xLeft i_yDown] i_xSize i_ySize [margin= r ...] # without GUI

set window full [on | off]

set window fix { i_xSize i_ySize | off } # with GUI
sets the position and/or size (only size if 2 arguments are given) of the graphics window without
Graphics User Interface (use option fix otherwise). Four arguments are in pixels. If you need to
display in a fixed size window from a script we recommend to use the set window command first
and then the display command.

set family of commands 319

The full option will switch into the fullscreen mode (also Ctrl-F and Esc to switch off) This
option does now work with GUI.
In the off-screen mode (see the display off command) set window is accompanied by re-
centering of the molecular image with margin= r_ ... and other center options.
The fix option will change window size for ICM in the GUI mode. In this case the window may
become smaller than the actual area in the master GUI window. Option fix is used to make video
clips with ICM using fixed size frames.
Example:

 # square 700x700 window in the upper left corner
 set window 570 30 700 700
 display window
 set window 300 300
 write image window=3*View(window) # hi-res. image

set xstick radii

set xstick as_select r_NewRadius | R_matchingArrayOfRadii
sets occupancy of selected atoms to or by a specified real value between 0.0 and 2.5A . See also:

GRAPHICS.stickRadius♦

show

show args [output=s_outputStringName]
show information about specified ICM-shell objects in your shell-window. Show is similar to the
list command, but it gives you more information, covers a broader range of subjects and allows
the user to show constants, subsets and expressions. However, in contrast to the list command,
show does not understand wildcards.

Option full will show arrays and shell variables which are grouped into tables (the components
of tables are hidden by default). The same option full temporarily sets l_showSpecialChar
to yes when sarrays are shown.

Option output allows one to dump the result into an ICM string variable with the specified name
for further analysis.

show selftether

show selftether as

shows atoms with selftether restraints imposed (require the "ts" energy terms to be activated
in minimize or montecarlo) The show command also returns the number of selftethered
atoms (i_out), the number of deviating atoms (i_2out) and the maximal deviation in
r_out

See also: selftether

show site

show site [ms] [seq_1 seq_2..]
show sites assigned to the selected molecules ms_ or sequences. By default all the sites
of the current object are shown. See also: set site, color site .

show shell variable

show arg1 arg2 ... [output=s_stringVarName]
show ICM-shell variable, constant, subsets, or expressions. One needs to
separate arguments by comma only if two consecutive arguments are numbers, and the second on
is a negative number constant. Option output allows one to dump the result into an ICM string
variable with the specified name for further analysis.
Examples:

320 set family of commands

 read alignment msf s_icmhome + "azurins"
 show azurins[3:20] # show a fragment of the alignment
 show a b a*b # two arrays and their product
 show Sin({1. 3. 5.}) # another array
 show 2., -3. # without the comma, it will show -1.
 show m_crn # map (m_crn) header information and
 # the map sections

show key

show key
show commands bound to key-strokes. Allowed keys: F1, .. F12, Ctrl-F1, ..
Ctrl-F12, Ctrl-A, ... Ctrl-Z, Alt-A, ... Alt-Z. See also the set key
command.

show map

show { map | mapName }
show the current or the specified map in text format. Example:

 build string "AKSD"
 make map potential Box(a_) "ge"
 display m_ge {1 2 3 0 4 5 6}
 show m_ge
 m_ge> written in ZYX mode (z-sections). Symmetry group #0
 Box {sect0,row0,col0, sect,row,col} = {-30,-8,-21, 32,16,28}
 Cell {A,B,C, angles(deg)} = {14.000,8.000,16.000, 90.00,90.00,90.00}
 Nof intervals (at x,y,z) = {28,16,32}
 Min/max/mean/rms density = -20.000000, 20.000000, -0.182712, 12.082560
 ...
 ::::::::::::::::**##########
 ::::::::::::::::**##########
 :::::::::::..:::**##########
 ::::*****::..::::**#########
 :::***###*:..::::***########
 ::***####**...:::****#######
 :***#####**...::::****######
 :***#####*:...::::******###*
 :***##**::....:::::*********
 :*****:::....::::::*********
 :****::::.....::::::********
 ::***::::.....::::::********
 ::***........::::::::*******
 ::***:.......::::::::*******
---{13 / 32}- # shows pages

show objects, molecules, residues, atoms and variables

show { os | ms | rs | as | vs }
show selected atom(s) as_ , residue(s) rs_ , molecule(s) ms_ , object(s) os_ , or variable(s)
vs_ , respectively.
Examples:

 show a_*. # all objects
 show a_*.* # all molecules of all objects
 show a_2.* # all molecules of the second object
 show a_* # all molecules of the current object
 show a_/ala # all alanines of the current object
 show a_1//c* # carbons of the 1st molecule of the current object
 show v_2.a//phi,psi

Data fields for objects :

show object
 # a_objectName. type n_Mol n_Res n_waters resolution object_name
 1 a_def. Type: ICM Mol: 1 Res: 4 def
 2 a_1dna. Type: X-Ray Mol: 3 Res: 532 Wat: 216 Resol: 2.20 thymidylate synt..

These fields can be accessed with the following functions:

show 321

object name: Name(os_)♦
object type: Type(os_ , 2) # returns "X-Ray","NMR","ICM",etc.♦
number of molecules: Nof(ms_), e.g. Nof(a_2.*)♦
number of residues: Nof(rs_), e.g. Nof(a_2.*/*)♦
resolution: Resolution(os_), e.g. Resolution(a_2.)♦
number of waters: Nof(water_selection), e.g. Nof(a_2.w*)♦
full name: Namex(os_), e.g. Namex(a_2.)♦

Data fields for molecules :

 read pdb "1a36"
 show a_*
 Name n_residues first_res_name object_name
 --{i Molecule}- N_Res Object ---
 1 a 544 ile 1a36
 2 b 22 dpa 1a36
 3 c 22 dpa 1a36
 4 w1 1 hoh 1a36
 5 w2 1 hoh 1a36
 ...

These and other molecule attributes can be accessed with the following functions:

mol. name: Name(ms_)♦
mol. type: Type(ms_ , 2) # field not shown Returns. "Nucl","Amino","Hetatm" etc.♦
number of residues: Nof(rs_), e.g. Nof(a_2.*/*)♦

show alias

show aliases
show all currently defined aliases. To show a specific alias, use the
alias aliasName
command (e.g. alias cd).

show alignment

show alignments [color]
show currently loaded alignments. Option color colors residues in the alignment by type.

show area

show area { surface | skin } [mute] [as_1 [as_12]] [surfaceAccuracy= i_level]
[waterRadius= r_newRadius]
Calculates the area of the solvent-accessible
surface or molecular surface (so called skin),
respectively. The probe radius is defined by the
waterRadius parameters (1.4 by default). You
can specify for which atoms you want to calculate
the surface (selection as_1). The
surfaceAccuracy level defines the 'resolution'
of the surface calculation. The default level is 3 but
the level of 5 is recommended for if the surfaces
are used to make a decision about the atom burial.
You can also additionally specify the environment
for these selected atoms, i.e. the neighbors which
you want to take into account in the surface
calculation.
The two most popular modes are the following:

measuring the surface area of some atoms
being a part of the whole system (e,g,
a_1 a_* or just a_1 , the top picture)

♦

measuring the surface area of a group of
atoms as if they are the only atoms that
exist in space (e.g. a_1 a_1 the bottom
picture).

♦

322 show

In essence, two optional selections [as_1 [as_12
]] impose a mask on atom pairs, so that only pairs
in two selections are considered. If only the first
selection is specified, the second one is assumed to
be all atoms . The two reasonable choices for the
second selection are all atoms (the default), and the
repetition of the first selection (acts as if not other
atoms are present in the system). In all cases, the
second selection must include the atoms of the first
one, e.g.

 show area skin a_1 a_1,2 waterRadius=1.2

The total area will be stored in r_out and the number of triangles used in the "skin" construction
in i_out .

The individual areas are stored with atoms and can be returned with the Area(as_) function.
Warning. This command only fills out the values for the selected atoms. If you want to set the
values of other atoms to zero, use the -{set area a_//* 0. } command. Example:

read object s_icmhome+"crn.ob"
set area a_1//* 0. # make sure that the initial area is zero
show surface area a_1//!h* a_1//!h* # only the first molecule
show Area(a_//*) # individual areas, hydrogens have 0.
show Sum(Area(a_//!h*)) # the total

show atoms

show as
shows properties of the selected atoms. Example:

build string "se ala"
show surface area
show a_//c*
 Atom Res Mol Obj X Y Z Occ B MMFF Code Xi Chrg formal Grad Area Grp
 ca 1 ala a1 def -2.748 0.000 -2.245 1.00 20.0 1 113 C 1 0.06 0 0.0 0.5 _ a_def.a1/1/ca
 cb 1 ala a1 def -2.329 -1.202 -3.093 1.00 20.0 1 113 C 0 -0.09 0 0.0 7.3 _ a_def.a1/1/cb
 c 1 ala a1 def -4.247 -0.000 -1.935 1.00 20.0 3 121 C 0 0.45 0 0.0 34.2 c a_def.a1/1/c

The fields:

Field Description
Atom atom name
Res residue number+[symbol] and name
Mol molecule name
Obj object name

show 323

X,Y,Z coordinates
Occ occupancy (from 0. to 1.)
B B-factor (positive)
MMFF MMFF atom code
Code ICM atom code
Xi chirality number (0,1,2,3)
Chrg partial charge
formal formal charge
Area solvent accessible surface area
Grp electrostatic group (atoms can not be separated)
as_ selection expression

show atom type

show atom type show atom type mmff [{ s_pattern | i_type }]
shows atom types stored in the icm.cod file. The mmff option allows one to check the Merck
Force Field atom type.
Examples:

 show atom type
 # show all ICM types
 -------------{atom codes}-----------
 #
 # icd vw hb hd wt sf na
 #
 atcd 0 0 0 0 0.000 0.00 ?
 atcd 1 1 1 0 1.008 0.00 h
 atcd 2 3 1 0 1.008 0.00 h
 ...
 show atom type mmff "*cation*"
 # cations
 show atom type mmff "*iron*ion*"
 # do we have iron ions?
 show atom type mmff "?C=*"
 # what types are connected to doubly-bonded carbon ?
 show atom type mmff "[!C]*ring*"
 # non-carbon types in rings
 show atom type mmff 32
 # some oxygens
 -----------{MMFF atom codes}--------
 Symb.Typ.[V] Description {formal charge}

 O2CM 32 [1] oxygen in carboxylate anion
 OXN 32 [1] N-oxide oxygen
 O2N 32 [1] nitro oxygen
 O2NO 32 [1] nitro-group oxygen in nitrate
 ...

show bond : detecting problematic covalent geometry

show bond as [mute|error|]

goes through all bonds of the selected atoms (returned in i_out) and does the following:

checks the number of bonds per atom, counts atoms with more than four bonds♦
finds bonds shorter than 0.6A and longer than the sum of two van der Waals radii
multipled by 0.7. Counts bonds that are two short or too long

♦

reports the number of problematic bonds or bond numbers in i_2out♦

show clash

show clash [mute] [as_1 [as_2]] [-r_vwDistanceFraction] [r_distance]
shows all the interatomic distances between two atom selections which are shorter than the sum of
two van der Waals radii multiplied by the r_vwDistanceFraction parameter (0.8 by default). This
command can be shown to show the short contacts only if the limit is about 0.8, or show show all
pairs of atoms with significant van der Waals contribution (the limit of about 1.2)

IMPORTANT: this will work only for the ICM-objects.

324 show

Use the show energy "vw" command (and pay attention to the current fixation) to
pre-calculate interaction lists. The output will show the actual distance and the ratio of this
distance and the sum of radii. Mark the two atoms of interest, separated by a logical OR, and paste
it into another command if necessary.

The number of van der Waals contacts satisfying the r_vwDistanceFraction criterion is returned in
the i_out shell variable.

The mute option suppresses the screen output (i_out is still calculated).
See also: display clash, undisplay clash. Visualize the strained atoms with show
a_//G or display a_//G .
Example:

 build string "se ala his trp glu"
 randomize v_//*
 display
 show clash a_//c* a_//c* # clashes between carbons
 show clash a_//c* a_//c* -0.7 # more tolerant test
 display clash

show color list

show color [mute]
shows list of colors defined in the file icm.clr and stores the output list in the S_out
string array. Option mute suppresses output to the screen but still saves to the S_out array
(useful for scripts)
See also: color command.
An example:

 show color
 -------------{colors}-----------
 1 black #000000
 2 white #ffffff
 3 grey #878787
 4 blue #0065ff
 5 red #ff0000
 ...

Example of show color mute use in a script:

 if (Exist(view)) then # check if graphics is active
 show color mute # saves a list of colors in S_out
 for i = 1, Nof(S_out)
 color background $S_out[i]
 pause
 endfor
 endif

show arrays as parallel vertical columns

show column array1 array2 [s_fileName] [separator= s_Separators] [
comment= s_Comment]
shows several arrays in a multi- column format. If you want to shorten the significant digits in
real arrays, use this trick:

a = {1.333333 2.44444} # creating some dumb arrays
b = a
show column Rarray(a,2), Rarray(b,1)

See also: write column, show database, write database.
Example:

 resnam = {"ala" "glu" "arg"}
 reschg = { 0., -1., 1.}
 show column resnam reschg
 show column separator=":" comment="Example table" resnam reschg

show 325

show comp_matrix

show comp_matrix
shows residue comparison matrix used by the alignment algorithms.
See also: set comp_matrix, read comp_matrix.

show table in database format

show database { table | array1 array2 }
shows several arrays or a table in a database format.
See also: read database show column, write database.
Example:

 resnam = {"ala" "glu" "arg"}
 reschg = { 0., -1., 1.}
 show database resnam reschg

show drestraint

show drestraint [as_select [as_select]] [center] [mute] [r_violation]
shows distance restraints. Arguments:

optional as_select atom selection arguments specify atom pairs to be considered.
Attention, the as_out selection can not be used as an argument since it is redefined by
the command.

♦

r_violation : if the r_violation distance is specified, only the restraints deviating from the
upper or lower bounds by r_violation are shown.

♦

center : If center option is specified the violation is measured with respect to the
target value of the distance restraint and optionally only the distances greater than
r_violation are reported.

♦

mute option: allows one to fill out the as_out selection and calculate the number of
selected drestraints (i_out) without actually reporting them. It is useful for scripts.

♦

Output:
as_out atomic selection of all atoms for which the specified criteria have been satisfied♦
i_out reports the number of selected drestraints♦

See also: drestraint and drestraint type.

show drestraint type

show drestraint types
shows available drestraint types as defined in the icm.rst file. The numbered global
or local types can be used to impose distance restraints. The other types are fixed and
are used to impose disulfide bonds or peptide bonds.

show energy

show energy [mute] [s_termString] [vs] [as_select1 [as_select2]]

show energy atom [mute] [s_gridTermString] [as_select1]
calculates and shows values of currently set or explicitly defined in s_termString energy
terms (e.g. "vw,el")

If the show energy atom option (described below) is used the result is stores it in the
bfactorfields with the offset of +20. If vs_ selection is specified, only the selected variables will be
unfixed. The initial fixation will be restored after completion. Two additional atom selections may
specify a subset of atom pairs that should be considered by the minimization procedure. Note that
the contribution from the "14" energy term is not displayed separately. It is included in the "vw"
contribution. If you want to display it separately, use the more straightforward Energy("14")
function.
Important: the boundary element electrostatics is the most computationally heavy term. It is
activated if electrostatic term el is switched on and preference electroMethod is set to
"boundary element" . The most demanding part is the calculation of the boundary and its

326 show

characteristics. Therefore, for multiple calculations with the same boundary we recommend to use
make boundary and delete boundary commands.

show energy atom, crystallographic electron density energies

show energy atom os_icm

calculates individual atomic grid energies for the some grid terms. (Note: A more direct way of
computing the projected map values on atom centers is given by the set field map
command.)

Maps used by the the show energy atom command:

"gc" (needs m_gc) vw heavy atoms♦
"gh" (needs m_gh) vw hydrogens♦
"ge" (needs m_ge) electrostatic♦
"gs" (needs m_gs) hydrophobic♦
"gp" (needs m_g1, ...) properties♦

the result is added the value of 20. and is set to the atomic bfactorfield (see Bfactor(as) and
set-factor.

Example with the "gp" property field:

build string "ASD"
make map potential "gp"
show energy atom "gp"
gp_e = Bfactor(a_//) - 20. # atomic energy contributions, -20 to eleminate shift
add column t Group(gp_e , a_// "sum") Name(a_/) full) # Group aggreates into residues
show t

Example with a crystallographic electron density map.

An electron density map needs to be transformed into an evenly spaced orthogonal map with the
make map potential m_xray R_box | ascommand. Example showing how somebody
messed up epinephrine's chirality:

loadEDS "3pah" 0. # loads m_3pah crystallographic 2Fo-Fc map for epinephrine read
pdb "3pah" # unconverted pdb bx = Box(a_aale 5.) # R_6box around epinephrine
convert Res(a_//* & bx) # carve out region of interest and convert to ICM make map
potential m_3pah bx # box around epinephrine, makes m_xr m_g1 = Trim(m_xr, -1., 1.)
set type property {1.} Count(50,300)//Count(330,404) only # without H set bfactor a_//*
0. show energy atom "gp" set bfactor a_//* & bx 20.-Bfactor(a_//* & bx) Select(a_// "b

See also: set field map

show energy gradient

show gradient
show gradient calculated by the minimize or show energy commands.

show hbond

show hbond [mute] [as_1 [as_2]][r_maxHbondDistance]
calculates and outputs the list of hydrogen bonds between two atom selections. By
default calculation is done between all the atoms of the current ICM object. The real
argument r_maxHbondDistance defines the upper bound of the distance between a
hydrogen and a potential hydrogen acceptor to place the pair to the hydrogen bond list.
Default value of r_maxHbondDistance parameter is 2.5 A. Number of identified
hydrogen bonds is saved in i_out . To display/undisplay hydrogen bonds, use
display hbond and undisplay hbond commands. Hydrogen bonds can also be
calculated by the minimize and show energy commands provided that the
hydrogen bond term is switched on.)

The number of hydrogen bonds satisfying the r_maxHbondDistance criterion is returned
in the i_out shell variable.

show 327

The mute option suppresses the screen output (i_out is still calculated).

show hbond exact : accurate bonding energy calculation

show hbond exact
calculate the hydrogen bonding energy according to the distributed electron density
geometry. Used in virtual screening to evaluate a score.

show table in html format

show html T [link T.S_1 s_linktype1 T.S_2 s_linktype2 ...]
show the T_ table with HTML tags. Interpret web links according to the web link types
described in the WEBLINK.DB array.
See also:

write html s_file T_ [link ...] - write the html document to a file◊
web T_ [link ...] - directly show the table in the web browser.◊

Option none suppresses the table title and the copyright notice.
Example:

 show html SR link SR.NA2 "PDB"

show iarray

show iarrays
show integer arrays defined in the shell. It shows names, dimensions and the first
elements of arrays. The I_out array contains the output of some functions and
commands and is always in the shell.

 ii={1 2 3 4 5 6 76}
 iii=Count(10)
 show iarray
 ---------------{iarrays}-------------

[1:1] { 0, ... }
 ii[1:7] { 1, ... }
 iii[1:7] { 1, ... }

show integers

show integers
show all integer shell variables. Example:

 show integer
 ---------------{integers}------------
 a 111
 autoSavePeriod 10
 defSymGroup 1

 0
 minTetherWindow 20
 mnRemarks 3
 mnSolutions 50
 ...

show label

show labels
show graphics string labels to find out their number. Then the labels can be addressed as
label 1, label 2 etc.
See also: display string_label

show library

show libraries
show loaded ICM-libraries. It's a lot of stuff, enter 'q' to exit.

328 show

show link

show link [ms]
show links between molecules of 3D molecules and corresponding sequences and
alignments.

show logical

show logicals
shows all logical shell variables in ICM-shell. Example:

 aa=yes
 show logical
 ---------------{logicals}------------
 aa yes
 l_alignProfiles yes
 l_antiAlias yes
 l_antiAliasGLfix no
 l_autoLink yes
 l_bpmc yes
 ...

show mol

show mol as_select
shows selected atoms in the mol file format. See also: read mol and write mol.

show mol2

show mol2 as_select
shows selected atoms in the mol2 -file format (file extension .ml2). See also: read
mol2 "file" and write mol2 "file" .

show molecule

show molecules
shows all molecules of all objects currently in icm-shell. This command is identical to
show a_*.*

show object

show objects
shows all molecular objects currently in icm-shell. This command is identical to show
a_*.
The same result is achieved with the list a_*. command.

show pdb

show pdb as_select
show selected atoms in the PDB file format.
See also: read pdb "file", and write pdb "file".

show pmf

show pmf

shows currently set distance functions between pmf types. See also: set pmf and pmf

show 329

show preferences

show preference
shows all icm preference variables in icm-shell (e.g.

 show preferences
 ..
 atomSingleStyle = "tetrahedron"
 1 = "tetrahedron" # current choice
 2 = "cross"
 3 = "dot"
 ..

show profile,rarray,real,sarray,string

show profile | rarray | real | sarray | string
shows all objects of specified type(s) in icm-shell. E.g. E.g.

 show sarray rarray

show residue

show residues
shows all residues in all molecules of all molecular objects. This command is equivalent
to

 show a_*.*/*

show residue type

show residue types
show names and characteristics of compounds described in the icm.res and user ICM
residue libraries.

show segment

show segment [ms]
show segment representation of 3D structure of a protein for the selected molecules
ms_ (all molecules of the current object by default).
See also assign sstructure segment, ribbonStyle, display ribbon.

show sequence

show sequences [selection] [number] [{ fasta | swiss | pir | gcg | msf
}]
show all sequences or the specified sequence seq_ in one of specified formats. The
default format is the fasta format. Option number defines if the residue numbers are
added. Option selection only shows sequences selected graphically or with the
select sequence .. command
Three logicals: l_showSstructure, l_showSites, and
l_showAccessibility control the display of a corresponding additional
information aligned with the sequence.
Example:

 readUniprot "RXRA_HUMAN"
 show sequence swiss RXRA_HUMAN

 read pdb "1lbd"
 show surface area
 make sequence
 Info> sequence 1lbd_a extracted
 show 1lbd_a # you see relative accessibilities in 0-9 scale
 l_showAccessibility = no
 show 1lbd_a

330 show

show stack

show stack [[i_FromConf] i_ToConf]
show the following parameters of the conformations currently residing in the
conformational stack.

iconf - a slot number◊
ener - total energy as calculated before the conformation was stored◊
rmsd - the distance (either Cartesian or angular RMSD) between the current
conformation of the object and the stack conformation calculated according to
the compare command.

◊

naft - the number of visits AFTER the last improvement of energy◊
nvis - the total number of visits to this slot; since new conformation are only
compared with the last stack conformation the conformations may drift and
cover a large area than described by the vicinity parameter

◊

show table

show [table header] T_table [database]
shows the specified table in the ICM table format (one line per table row) or ICM
database format (a list of column-name column values pairs for each entry). The
header option suppresses the column subtitles.

If you want to shorten the significant digits in real columns, use this trick:

add column t {1.333333 2.44444} # creating some dumb table with one column
t.A = Rarray(t.A 2) # will trim to 2 sign digits
show t

See also: show html T_ . Database index tables are exceptions, show T_index will
show all the entries of the related database. To see members of an index table type the
index table name and press TAB.

show terms

show terms [all]
shows the active energy/penalty terms. With option all it shows all the terms available.
The result is saved in the s_out string. You can also use the Info (term) function to
return the term string. See also: set terms, Info (term), delete terms.

show tethers

show tethers [mute] [as_select] [r_minDeviation]
Shows tethered atoms with deviation larger than r_minDeviation (0. by default) and
returns these atoms in as_out . Option mute is used when you just want to get a
selection (as_out) of strongly deviated atoms.
See also: display tethers.

show version

show version
show characteristics of the current ICM executable. Part of this string containing the
version number is returned by the Version() function.

show vrestraints

show vrestraint [vs]
shows vrestraints imposed on the internal variables of ICM molecular object.

show 331

show vrestraint type

show vrestraint types
shows types of vrestraints. These types are loaded from the icm.rst file.

show volume

show volume skin [mute] [as]

show volume surface [mute] [as]
Calculates the volume confined by the solvent-accessible surface or molecular surface (so
called "skin"), respectively . One optional selection as_1 defines atoms for which the
volume is calculated. If the selection is not specified, the atoms are assumed to belong to
the current object. The volume will be stored in r_out and the number of triangles used
in the skin construction in i_out .
Examples:

 read obj s_icmhome+"crn.ob"
 show volume surface # inside accessible surface
 print "volume inside accessible surface = ", r_out
 show volume skin # inside molecular surface
 print "volume inside molecular surface = ", r_out

calculate volume of blobs of map density.

show volume [map] [I_indexBox[1:6]] [r_Threshold]
Contour electron density map at a given r_Threshold and calculate the volume of the
high-density blobs. Defaults:

take the current map;◊
contour the whole map;◊
use threshold value from the ICM-shell real variable mapSigmaLevel .◊

Threshold is expressed in the units of standard deviations from the mean map value, i.e.
1. stands one sigma over the mean. The volume will be stored in r_out . See also:
make grob m_ .
Examples:

 read map s_icmhome+"crn.map" # load m_crn map
 show volume m_crn 3. # calculate volume inside the

show supported pharmacophore types

show pharmacophore type

lists types of pharmacophoric centers and corresponding SMARTS expressions.

See also: find pharmacophore

sort

a family of sort commands (sort objects, molecules in object, array/arrays or sort tables
by their columns).
sort array(s)

sort [reverse] [number] [history] sort_key_array [array2 array3
...]
sort one or several integer, real or string arrays. The first array is the sort key. By default
ordering is lexicographic for string arrays and by increasing arithmetic value for integer
and real arrays.
Options:

reverse: reverse the sense of comparisons.◊

332 show

number: enforce sorting according to arithmetic value for string arrays.◊
history: save the old order in I_out (new[i]==old[I_out[i]])◊

See also: Sort . Examples:

 a={3 2 1 5 7 4 6}
 b=Sin(a*50.)
 c={"three" "two" "one" "Five" "Seven" "four" "Six" }
 show column a b c
 sort a b c
 show column a b c
 sort reverse b a c
 show column a b c
 sort c b a
 show column a b c

sort table

sort [reverse] [number] [history] table.keyArray1 [reverse]
table.keyarray1 [reverse] ...
this command sorts all the arrays of the table so that all the listed table.keyArrays are
applied sequentially with descending priority. Each array can be followed by the
reverse option to change the sorting order.
Examples:

 read table s_icmhome+"res.tab" # residue properties
 RES = $s_out # create an ICM table RES
 sort RES.aa # resort entries by residue name
 show RES
 sort reverse RES.flexInd RES.aa
 show RES
 sort RES.hPhobInd RES.flexInd
 show RES

sort table column

sort column tab [function = s_expr] [reverse] [name = S_cols] [
selection]
this command sorts table columns by name or by custom function/expression

Options:

reverse : option to change the sorting order◊
selection : option sort only selected columns◊
name : specify sarray of column names to sort◊
function : specify the function or expression to calculate sorting key. (See
add column function for detailed description of available functions)

◊

Examples:

makeTable "t" 10 0 0 3 no no no yes
sort column t function="Icm::Min(COL)" # Sorts by minimum value ('COL' refers to the current current column)
sort column t name={"B","C"} function="Icm::Corr(COL,A)" reverse # Sorts columns 'B' 'C' by correlation to column A

sort and reorder molecular objects

sort object os_ i_pos # move selected objects to a give position

sort object R_key|I_key [reverse] # reorder objects by an array, e.g. sort
object Mass(a_*.)

sort object S_key [reverse] [number] # option number interprets the string
array as numbers

sort object [field = i_Field] [reverse]
resorts all molecular objects by the specified user field (see the set field command,

sort 333

and the Field function). If the field is not specified, the objects are sorted by their
mass.

sort molecules in an object by mass or a user field

sort os_ObjectSelection [field = i_Field]
resorts the molecules in each of the selected non-ICM objects by the specified user field
(see the set field command, and the Field function). If the field is not specified,
the molecules are sorted by molecular mass. An ICM object can be stripped, resorted and
then converted again.

Sorting a stack of conformations

sort stack
sort conformations in a stack according to their energies. New energies can be
assigned to the same conformations with the set stack energy command.

split

can split grobs, tables into individual components, hierarchical data tree into clusters
and DNA/RNA sequences (or protein) by multiple-N stretches.
split grob

split g_complexGrob [s_rootGrobsName] [i_maxNofGrobs] [
r_minNofPointsInGrob]
divide disconnected parts of a graphics object into a bunch of separate graphics
object sorted according to their size (measured as the number of vertices). The maximal
number of new grobs is defined either by i_maxNofGrobs explicitly or by the MnGrobs
parameter. The latter can be redefined in the icm.cfg configuration file. The
i_maxNofGrobs option allows one to retain only larger pieces. Grobs will be sorted
according to their number of points and named by adding their sequential number to the
input grob name or s_rootGrobsName, if specified.
The split command is used in protein cavity analysis and other applications
where one needs to treat, display, and measure disconnected parts separately. You can
also limit the number of points of the grobs generated by the command by providing the
real argument with the minimal number of vertices you want in a grob.
See also: Volume(g_), Area(g_), Xyz(g_).
Examples:

 read object s_icmhome + "crn"
 make grob skin a_//cb a_//cb name="g_crn"
 split g_crn
 display grob smooth # display as one smooth surface
 undisplay g_crn
 color grob unique
 show Volume(g_crn3) Area(g_crn3)

 read map s_icmhome + "crn"
 make grob
 split g_crn "blob" 30 # create up to 30 largest grobs and
 # call them "blob1" "blob2"...
a variant: split g_crn "blob" 40 100.0 # discard grobs smaller than 100. vertices
 delete g_crn
 display grob
 color grob unique

split group : derive replacement group arrays from a
combinatorial library and a scaffold.

split group scaffold.mol combilib [auto]

an operation inverse to the enumerate library command. In this case we take the
library with a common scaffold, specify the scaffold and output an array of replacement
groups R1 , R2 ...

334 sort

With auto option no explicit R-group specification is needed. The command will
automatically find attachment positions and create appropriate columns. Columns which
are invariant (no changes of substituents) will be exclcuded.

Example:

smi = {"C1CCC2C(C1)CCCN2", "CCC1CCCNC1C1CCCCC1", "CC1CCCNC1C1CCCCC1", "C1CCC(CC1)C1CCCCN1"}
add column t Chemical(smi)
split group t.mol Chemical("C1CC(C(NC1)[R2,H])[R1,H]") name="tt"

See also: enumerate library , make reaction , Replace chemical ,
Find chemical , SAR analysis

Splitting a table to arrays

split [t_tableName]
split table into individual arrays.
Example:

 group table t {1 2 3} "a" {2 3 4} "b" # t.a t.b arrays
 split t # a and b arrays

Splitting a sequence to domains between NNN. runs

split sequence_with_NNruns [i_minlen_of_Nrun]

the sequence will be divided into smaller sequences between NNN.. runs. By default even
a single N is a separator. Nowever one can specify the minimal length of the N-run as the
second argument. Example:

a=Sequence("AAANNAAAAAAAAAAAAAANNNNNNAAAAAAAAANANA" nucleotide)
split a 3
show sequence

Splitting multiple values in each cell of a column into
single-value cells by multiplying rows.

split [tableColumn] [separator= character]
takes each string of the specified column and splits it by the separator (comma is the
default separator, e.g. separator=",") The rows are multiplied accordingly. Example:

group table t {1,2} {"a,b,c","d,e"}
t
 #>-A-----------B----------
 1 a,b,c
 2 d,e

split t.B separator=","
t
 #>-A-----------B----------
 1 a
 2 d
 1 b
 1 c
 2 e

Note that extra columns are appended to the original table (that explains somewhat
strange order).

Splitting an object into separate molecules

split object
There is no such command, but if you want to split a molecular object into separate
molecules, you can simply copy the object and delete unwanted molecules in each copy.
Example:

split 335

 copy a_ "b"
 delete a_b.!1 # delete all but the first molecule
 write a_b. "b" # contains only the first molecule

 copy a_ "c"
 delete a_c.!2 # delete all but the second molecule
 write a_c. "c" # contains only the second molecule
#etc..

Changing the position of tree cursor (separator) and
calculating new cluster numbers

Rows of a data table or a chemical table can be organized into a hierarchical tree which is
stored in the table.cluster array of the table header. This can be done with the make
tree command which also creates a column with cluster group indices. The name of
that column can be obtained with the Name(table.cluster i_cluster split)
function. The tree can be used to determine clusters at different distance levels.

The threshold distance at which the clustering is made can be reset with the

split table.cluster i_cluster r_newSplitDistance

command. This command also recalculates the cluster numbers.

E.g.

 split T.cluster 1 0.14 # take the 1st tree and set distance threshold to 0.14

See also Split function

sprintf

sprintf [append] s_formatString arg1 arg1 arg2 arg3 ... [name=
s_outputStringName]
Print to the s_out string, or the s_outputStringName specified after the name= option.
The same syntax as printf command, but the result is not displayed.
Example in which string outStr is the destination:

 sprintf "mncalls = %d\n",mncalls name="outStr"

store

store things to internal memory structures.
store conf

store conf [i_slotNumber] [os_obj] [s_comment]

store conf i_slotNumber { r_energy | number= i_nOfVisits } [os_obj] [s_comment]
store current conformation into specified slot of the conformational stack. By
default it puts the conformation into the first free slot, or appends it to the end. The
energy, by default, is automatically extracted from the previous energy evaluation, or
taken from r_energy if explicitly provided. The total number of visits (nvi) is set to 1
by default.

if the os_obj argument is provided the conformation will be added to the local stack in the
object.

Example:

 build string "WSD"
 montecarlo # generates a stack
 show stack
 set v_//omg 180. # change a conformation
 store conf -9. "mycomment" # add conformation with energy -9. and comment string
 store conf 3, -9. # override slot 3 with energy -99.

336 split

 store conf number=33 # set conf with number of visits=33

See also set stack property array_of_values command , e.g.

set stack energy Random(0., 10., Nof(stack))

for multiple assignments of energy values, number of visits or total number of visits.

If os_sel argument is provided the conformation will be stored into a object's stack (see
also store stack os_ to move the whole stack to the object).

See also: store stack os to copy the global stack to an object

store conformational stack inside an object

store stack os

takes the current stack and stores it in a compressed form inside the specified object. The
compressed stack can then be extracted with the load stack object command.
Option stack of the montecarlo command stores the generated stack inside the current
object automatically.

See also:

delete stack os◊
copy os stack◊
load stack object◊
load conf◊
montecarlo .. store◊
set object .. stack◊
Exist (os1 stack)◊
Nof (os1 stack) # returs the number of conformations in a stored stack◊

store frame

store frame [write] [append]

stores the current conformation to a trajectory file.

Options:

append : appends to previously existing file◊
write : closes the movie file◊

The advantage of the trajectory file is the possibility of interpolated display as a trajectory
animation. See display trajectory .

Example in which we create trajectory from a stack:

for i=1,Nof(conf)
 load conf i
 store frame
endfor
store frame write
#
display ribbon
display trajectory sstructure 20. 40.

ssearch

is a systematic search through torsion space combined with local minimization.
you may globally optimize any set of energy/penalty terms including
electrostatics, solvation, entropy, density correlation etc.

◊

you may search an arbitrary subset of variables◊
you may allow full local minimization after each systematic change◊

store 337

you may search only through centers of the preferred local
multidimensional zones (for example rotamers) which is more
efficient than an even grid sampling

◊

you may perform both the global search (the full [-180.,180.] range) and the
local search (grid search around the current conformation).

◊

ssearch [local] [residue] [vs_Ssearch [vs_minimize]] [as_select1 [
as_select2]]
systematically changes vs_Ssearch variables and carries out energy minimization with
respect to the vs_minimize variables after each systematic conformational change. The
lowest energy conformation is loaded from the conformational stack at the end of the
procedure. By default every variable from vs_Ssearch selection goes through
nSsearchStep evenly distributed values. The step therefore is 360 deg. over
nSsearchStep. Option local imposes the grid locally around the current values of
vs_Ssearch variables. In this case the program uses ssearchStep parameter.
If you want to prevent the procedure from automatically writing the stack of best
conformations to a file set the autoSavePeriod variable to zero.

Option residue allows one to searche each variables of each residue independently.
See also montecarlo .
Example:

 read object "crn" # good old crambin
 ssearch v_/14/x* # place optimally Asn14 side-chain
 ssearch residue v_/tyr/x* # loops through tyrosines and ssearch each separately/
ssearch residue simple vs_ # GAP model only

strip

strip os_object [virtual]
strip an ICM-molecular object from its ICM attributes and reduce it into a pdb-object.
The latter are still good for graphics, superposition, basic geometric manipulations etc.
Also, some chemical operations, e.g. attaching chemical groups are best performed on
simpler pdb-objects. Stripping may save you a lot of memory as well.
Option virtual tells the command to delete the virtual atoms upon conversion. The
virtual atoms (selected as a_//vt*) are always present in the ICM object, but are not
necessary in the stripped object.
String is also used to perform operations which are not allowed for ICM object, but are
allowed for simpler PDB objects (for example dragging individual atoms with a mouse)
These commands include:

deleting hydrogens◊
make bond auto◊

Example:

 build smiles "c1ccccc1"
 strip a_ virtual

superimpose

superimpose [[align | residue | ali] [exact] [minimize]] as_selectStatic
as_selectMovable
superimpose os_static I_atomNumbers1 os_movable I_atomNumbers2
superimpose as_movableByTethers [reverse]

superimpose chemical [output] | pharmacophore as_selectStatic
as_selectMovable

superimpose P_atompairs os_movable # e.g. superimpose distpairs a_1.
optimally superimpose the second movable object onto the first one using selected atoms
or residues as equivalent points. At least one pair of equivalent atoms needs to be
provided.

Option minimize iteratively finds the best subset of atom pairs (see superimpose
minimize)

338 ssearch

Option residue skips residue alignment by sequence or numbers and aligns them
sequentially as selected. The atoms are aligned by name. Use option minimizewith it.

Option reverse in superimposition by tethers moves the 'template', rather than the
selected object.

The P_atompairs argument allows one to superimpose by an arbitrary set of atom pairs.
The atom pairs can be created with the make distance command or picked in GUI
with the distance tool.

Selections may by of any level:

atom selection as_ ,◊
residue selection rs_ ,◊
molecular selection ms_◊
object selection os_ .◊

Example in which we will superimpose the selection of the binding site residues.
Perform the following steps:

generate a master sequence alignment, e.g.

read pdb "1ql6"
read pdb "2phk"
make sequence a_*.1
Sequence(a_*.1)
alig = Align(1ql6_a 2phk_a)

Edit this alignment if necessary (usually you do not need to do it)

◊

find the selections for the binding pocket in one or both molecules, e.g.

bindpock = Sphere(a_2phk.atp a_2phk.a 10.)

◊

Align by this residues, keep the a_2phk. object where it is and change the
coordinates of a_1ql6. :

superimpoase bindpock a_1ql6.a alig

If you do not care about the alignment, it can also be generated on the fly with
the align option instead of the alignment name.

◊

The second molecule can also have a selection, then the intersect of the two selections
will be used for superposition.

The option defines how the two sets are aligned (the residue alignment may be explicitly
provided as the ali_ argument, and the objects are linked with the alignment):

chemical option can be used to superimpose small molecules. In this mode atom
equivalence can be found either by substructure search or (if none of molecules is
substructure of other) by common substructure search algorithm. Other feature of
chemical mode is that it enumerates topologically equivalent atoms to find best
superposition.

Option output (with option chemical) produces R_2out array with individual
deviations.
alignment options:

Default (no options): Residue alignment: by residue number. Atom alignment:
by atom name for pairs of identical residues or pairs of close residues (F with Y;
B with D,N; D with N; E with Qor Z, Q with Z), for other residue pairs only the
backbone atoms ca,c,n,o,hn,ha are aligned.

◊

align option: Residue correspondence is established by sequence alignment
using the ICM ZEGA alignment Abagyan, Batalov, 1997 Atom
alignment: by atom name (see the default option).

◊

exact option: Residue matching is ignored. Two atom selections are directly
sequentially aligned. Numbers of atoms in two selections must coincide.

◊

align exact option: Residue alignment: Needleman and Wunsch. Inside
residue atoms are aligned sequentially and regardless of the name.

◊

Number of equivalent atom pairs is saved in i_out; resulting RMSD is saved in
r_out; a selection of atoms in the "static" object used for superposition is saved in
as_out, that of "movable" object in as2_out .

superimpose 339

Virtual atoms. Be default, the first two virtual atoms (vt1 and vt2) are automatically
excluded from both selections unless the virtual option is explicitly specified.
Note that if the movable object is of ICM-type it is preferable to have all six virtual
variables unfixed (e.g. unfix V_movableObj.//?vt*). Otherwise, if some or all
of them (V_//?vt*) are fixed, you will get a warning, and only the partial
minimization of the RMS distance possible with the given degrees of freedom will be
performed.
If the explicit order of atoms is specified and two single object selections are provided,
e.g.

superimpose a_a. a_b. {3 5 7} {10 3 5}

the superposition will be performed in the specified order.
The following output is produced:

i_out : the total number of equivalent atom pairs superimposed (it is also
equal to Nof(as_out))

◊

r_out : the rms deviation for all equivalent atom pairs◊
as_out and as2_out : gives the equivalent atoms in two objects.◊
R_out array of 12 elements returns the superposition transformation
vector for the transform command.

◊

with option output the actual deviations upon superposition will be returned
in R_2out . This command will create table DEV of atomic deviations: add
columnt DEV Sarray(as_out) Sarray(as_2out) R_2out

◊

See also: Rmsd(), Srmsd() , superimpose minimize .

Iterative search of the best atom pair subset for
superposition.

superimpose as1 as2 minimize options

This procedure attempts to find the better "alignable" core in both structures after the
atom equivalences have been established. This is important if there is a minority of atom
pairs that are really different in two selections and this minority messes up the
superposition and the RMSD values. Examples of that such movements include moving
side-chains, loops, tails, etc.

Theory

The algorithm resembles the one published by Damm and Carlson in Biophys.J
2006,90,4558 with a few modifications, namely the adaptable st.dev. for the gaussian
distribution (step 5) and the way the weighted Rmsd is calculated (in ICM it is divided by
the sum of weights, rather than by n). The adaptable denominator in the distribution
ensures a better quality superposition.

The ICM procedure uses the weighted superposition and the following procedure:

Start from two aligned or equivalent atom arrays A and B The atom equivalences
established according to residue numbers, alignments, atom names etc. (see superimpose options).

1.

set all weights to 1.2.
perform weighted superposition (and evaluate Rmsd, R).3.
Calculate the deviations Di for each atom pair i .4.
Sort the deviations and find the deviation Dx corresponding to the X-quantile
(the TOOLS.superimposeMinAtomFraction parameter). E.g. if this
parameter is 0.5, you will find D50, the 50-percentile of the deviation array.

5.

calculate the weights W according to following formula: Wi = exp(- D2
x / D2

i
) small deviations compared to this adaptable mid-scale deviation will get weights close to 1. while larger
deviation will get progressively smaller weights

6.

go back to step 3 unless the iteration limit
TOOLS.superimposeMaxIterations is reached or RMSD is not
improved any more.

7.

This procedure will gradually find the alignable core that will cover at least X % of the
pairs. The -minimize principle is also implemented in the Rmsd function.

To calculate RMSD values of different subsets of atoms one can use the Srmsd function
after this molecules are superimposed. The l_info variable controls if the iterations are

340 Iterative search of the best atom pair subset for superposition.

shown .

The following output is produced:

i_out : the total number of equivalent atom pairs superimposed (it is also
equal to Nof(as_out))

◊

r_out : the weighted rms deviation for ALL equivalent atom pairs◊
i_2out : the number of equivalent atom pairs that define the core for which the
unweighted rms is calculated

◊

r_2out : the unweighted rms deviation for the 'core subset' of atom pairs
deviating less than TOOLS.superimposeMaxDeviation

◊

as_out : is returned in the superimpose command and gives the atoms in the
static object that have 'equivalent' counterparts in the other object.
i_2out/Real(i_out) will give you the fraction of equivalent atom pairs in
the core

◊

R_out array of 12 elements returns the superposition transformation
vector for the transform command.

◊

with option output the actual deviations upon superposition will be returned
in R_2out . This command will create table DEV of atomic deviations: add
column DEV Sarray(as_out) Sarray(as_2out) R_2out

◊

See also :

Rmsd(as1 as2 minimize [option])◊
Rmsd(as1 tether minimize)◊
Smsd(as1 as2 option)◊

Parameters for the minimize option of the superposition:

TOOLS.superimposeMaxIterations◊
TOOLS.superimposeMinAtomFraction◊
TOOLS.superimposeMaxDeviation determines the output of the
command, namely, reports the fraction of initial set of equivalent pairs that are
superimposed with distances below this limit.

◊

sys (or unix): system command

sys system_shell_command unix unix_shell_command
issues a system shell command from ICM. You may use sys or unix interchangeably.
However, every time your ICM script makes a system call, ICM spawns a new process.
Keep in mind that some simple external operations on files and directories are possible
without the thread-spawning unix command. Here is the list of what can be done
without it:

command comment unix equivalent example
delete system
s_file delete a single file rm file a="1crn.ob"; delete

system a

rename system s_f1
s_newname

rename/move a single
file mv file1 file2

rename system
"1crn.ob"
"1crn_old.ob"

copy-systems_f1 s_f2 copy a single file cp file1 file2 copy system "a" "b"
set directory
s_dirname change directory (cd) cd dirname set directory

"./DOCK1"
make directory
s_dirname make a directory mkdir make directory

"NEW"

Path (directory) returns the path to the
current directory pwd s_currDir =

Path(directory)
Sarray (
s_filename_filter
directory [all])

returns the file list
array, all goes to
subdirectories

ls -1 [-R]
name_pattern

a = Sarray("*.icb"
directory)

Back to the sys command. By default, the ICM process waits until the system shell
process has completed. sys must be the first word in the command. Important:
Construction

 if (<condition>) sys system_command

is illegal. Use

sys (or unix): system command 341

 if (<condition>) then
 sys system_command
 endif

instead. For cross-platform compatibility, also use the following portable ICM shell
variables instead of non-portable system-specific commands: s_sysCp , s_sysLs ,
s_sysLtt , s_sysMv , s_sysRm. Example:

 sys $s_sysLs # cross-platform portable list command
 sys ls # non-portable unix only ls command

As you might have guessed from the above example, to pass the ICM-shell variables to
the system_shell_command one may use integer, real or string ICM-shell
variables, protected with dollar sign ($) prefix. Important: passing ICM-shell variables
to the UNIX command is impossible if you use an alias name (e.g. ux) instead of the
original unix command.
Examples:

 unix grep -i myoglobin /data/pdb/brookdir.doc
 unix echo $mncalls $s_pdbDir $dielConst

 file="/data/pdb/"+Name(a_1.) # tricky file name
 unix grep ATOM $file | wc -l # $file will be substituted by
 # the value of this ICM-shell
 # string variable

See also:

Unix function◊
make background command◊

test

test l_val | i_val

This command produces an error if the condition passed to it as anrgument is not true. It
is convenient for writing testing frameworks and debugging scripts.

Examples:

test yes
test no
test 2==2
test 2==3

test real r_v1 r_v2

test exact I_v1 I_v2

test exact S_v1 S_v2

test real R_v1 R_v2

test real M_v1 M_v2

test exact T_v1 T_v2

These commands test two objects to be identical. For real values, the comparison is made
with a certain tolerance. Tables with advanced parray columns may not be properly
supported.

Examples:

test real {2. 4.} 2.*{1. 2.}
test exact {2 4} 2*{1 2}

342 test

test binary

test binary s_file1 s_file2

Tests two files to be identical.

then

is one of the ICM flow control statements, used to perform conditional
statements.
See also if, elseif, and endif .

transform

performs transformations of 3D objects or string arrays in place. The
geometrical transformation is defined by the transformation vector .

transform string arrays in place

transform sarray S_array "tolower"|"toupper"|"trim"

This command will transform elements of string arrays or text columns of tables in place.
Three transformations are currently possible:

"tolower"◊
"toupper"◊
"trim"◊

Example:

read table s_userDir + "inx/PDB.tab"
transform sarray PDB.head "tolower" # in place

transform molecular objects or grobs

transform molecular objects to symmetry related positions.
transform {ms|g_grob} R_12transformationVector

transform molecules (ms_) or graphics objects according to the transformation
vector.
See also these two examples: (example 1 and example 2).
You can also manually move molecules with respect to each other on the graphics screen
by using the connect ms_ command to choose the molecules which can be moved
separately.
transform ms i_transformationNumber [translate [= <{x,y,z}>]]
transform molecules ms_ according to the specified transformation.
i_transformationNumber is a symmetry operation number in an array of all operators of a
space group. The first transformation usually keeps the object in place. The symmetry
transformations are defined in a 12*n real array where each chunk of 12 real values
defines 3x3 rotation matrix and translation vector {a4,a8,a12}. The complete 4x4
transformation matrix looks like this:

 a1 a2 a3 | a4
 a5 a6 a7 | a8
 a9 a10 a11 | a12
 ------------+----
 0. 0. 0. | 1.

If i_number exceeds the number of space group symmetry transformations the
symmetrical images in up to 26 surrounding cells are created. This operation is only
possible, if symmetry information (sym.group name and cell dimensions) is defined for
the object. Usually PDB and CSD files contain the above information, it is preserved
upon conversion. Use the Cell() or the Symgroup() functions to find out if the
space group is defined. If not, you may assign it to the object with the set symmetry

test 343

object command. In a special case of i_number=0, the object is placed in the
"primary" subunit of the cell (e.g. in sym.group "P 21 21 21" that is 0<x<a, 0<y<b,
0<z<c/4; currently, the i_number=0 option is supported only for groups 1 and 19).

Option translate tells the command to shift the transformed coordinates back to the
vicinity of the source coordinate set (translate) or to the vicinity of the {x,y,z} point
provided.
Example:

 read pdb "1sre"
 copy a_1. "a1"
 transform a_a1. Transform(a_a1.)[13:24] # Trasform with R_12transformationVector
 copy a_1. "a2"
 transform a_a2. 3 # same using i_transformationNumber

See also Transform

translate

translate { os | ms | g_grob .. | origin } { add R3_transl_vector |
R3_destinationPoint | M_xyz [symmetry]
translate the center of mass of the specified object(s) (os_) or molecule(s) (ms_) to
a specified position, or, with the add option, by a R_3translationVector vector. If a Nx3
matrix is specified, the mean vector is calculated. You can also move molecules/objects
interactively with the mouse after the connect command. Without the add option, the
translation
symmetry option With the symmetry option the R_3translationVector should be in
fractional coordinates. Option add translates by the specified vector from the current
position. Without add the program tries to identify a compensating shift to a position in
which the center of gravity of the selected molecule(s) has minimal positive fractional
coordinates.
Examples:

 read pdb "1fbi"
 delete a_!p,q,y # get rid of redundancies
 copy a_ "a1"
 translate a_a1. add symmetry {0., 0., -1.} # shift whole object by fractional coordinates
 cool a_
 for i=1,10
 translate a_y add {0., 0., 0.9} # shift molecule y by an increment
 endfor

To calculate a displacement vector, follow this example in which we calculate a
translation vector for molecule y :

 read pdb "1fbi"
 delete a_!p,q,y # get rid of reduncancies
 cool a_
 v1 = Rarray(Xyz(a_y/1/ca))
 connect a_y # now drag the molecule with the middle button and press Esc
 v2 = Rarray(Xyz(a_y/1/ca))
 vtrans = v2 - v1

undisplay

undisplay [[ms] store] args Opposite to display .

The store option preserves colors and representations so that they can be restored by
the next display command.
Examples of the undisplay command:

 undisplay store a_1,2 # undisplay the two molecules and memorize their appearence
 undisplay ribbon # ribbon display not needed any more
 undisplay g_icos # a graphics object not needed any more
 undisplay a_/w*,hoh* # who cares about water molecules ...
 undisplay residue labels # just "labels" will do the same
 undisplay string # see also "delete label" command
 undisplay a_//h* # who cares about hydrogens ...

344 transform

 undisplay hbond a_1./1:29 # ... and, hence, about H-bonds
 undisplay tether a_/12:20
 undisplay box
 undisplay cursor
 undisplay origin # undisplay the coordinate frame
 undisplay volume # deactivate the fog effect
 undisplay window

To get rid of the whole graphics window for fast calculations use:

 undisplay window # delete GL graphics window

undisplay window

undisplay window

This command deletes the 3D graphics window. It may be used to speed up the
calculations by avoiding the re-drawing operations. This command can also be applied
from Windows menu of the GUI interface

See display window

unfix

unfix [only] Vs_select
unfix (set free) specified variables (such as bond lengths, angles and phases or torsions)
in an ICM-object. Opposite to fix command. This operation can be applied to the
current object only (use set object os_newObj first).
Important: since it only makes sense to unfix variables which are currently fixed, use
all variable selection starting with capital V which selects among ALL (both
free and fixed) variables, as opposed to vs_ which selects only from FREE variables.
Examples:

 # only this loop has free torsions now
 unfix only V_/8:18/phi,PSI,H,M,P

Note that PSI torsion references is used for traditional residue attribution

wait

wait for the child ICM processes to finish, quit the child processes
wait [pipe]
allows one to synchronize multiple ICM processes spawned by the fork command.

for the parent process: wait until all the child processes spawned with the fork
command are finished.

◊

for the child processes: quit the spawned ICM process◊
With pipe option the command will synchronously prints the output from all child
processes launched with fork pipe

See $ICMHOME/molpipe/molto3d.icm

See also: fork , wait , l_out (defines the parent), Index(fork [system|all]) .

web

web s_url

invokes an external web browser call to WWW page or local file (Html, Pdf etc). Can
be used e.g. to link ICM table entries to NCBI, PDB etc. databases

Example:

s_ncbi= "http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val="

undisplay 345

web s_ncbi+"Q28509"

web table: shows an icm table with a web browser

web [delete] [s_file] T [link T.S_1 s_linktype1 T.S_2 s_linktype2 ...]
The command presents the T_ table in your web browser window. Optional web links are
interpreted according to the web link types described in the WEBLINK.DB array.
If the table contains chemicals, ICM creates a file with the compound images using Peter
Ertl's JME classes (see also the s_javaCodeBase variable).

Example:

 read sequence "zincFing.seq"
 find prosite 1znf_m 0.3
 show SITES
 web SITES link SITES.AC "AUTO"

See also: write html , show html

while

while
is one of the ICM flow control statements, used to perform a loop in the
ICM-shell calculations.
See also: for, endwhile .

write

write stuff to a disk file. Logical variable l_confirm defines if you'll be prompted
whether to overwrite an existing file with the same name. Use option delete to delete
(or overwrite) the existing file unconditionally.
For the list of ICM-objects you can write, and formats you can choose, see read and
show commands. Generic syntax:
write [binary] [append | delete] { variable | constant | expression }
s_fileNameRoot[.ext]
With the binary binary option multiple objects or classes of objects can be writtin into
a single cross-platform compatible binary file. To read it use read binary and to read
the table of its contents use read binary list .

Common options:

append - appends to an existing file or creates new◊
delete - overwrites an existing file◊

See also corresponding read commands.

write alignment

write [alignment] [msf | fasta] ali_Name [s_fileName] [
SEQUENCE.restoreOrigNames=yes|no]
write alignment ali_Name to a file. Default extension is .ali . Note: if alignment is only
a group of unaligned sequences, generated by the group command, the result will be
just a multiple sequence file, rather than an alignment file (there will be
no dashes at the end).
The default ICM format for an alignment looks like this:

#>ali sh3
Consensus ...#.^.YD%..+~..-#~# K~-.#~##.~~..~WW.#. ~~.~
Fyn ----VTLFVALYDYEARTEDDLSFHKGEKFQILNSSEGDWWEARSLTTGET
Spec DETGKELVLALYDYQEKSPREVTMKKGDILTLLNSTNKDWWKVE--VNDRQ
Eps8 KTQPKKYAKSKYDFVARNSSELSM-KDDVLELILDDRRQWWKVR---NSGD
#Fyn __EEEE__________________EEEEEEE____EEEEEE_____E

346 web

Consensus G%#P...#..#.
Fyn GYIPSNYVAPVDSIQ
Spec GFVPAAYVKKLD---
Eps8 GFVPNNILDIMRTPE
#Fyn EEEGGGGEEE_____

nID 7 Lmin 61 ID 11.5 %

The lines starting from hash (#) are comments and are not required
The length of each alignment block is controlled by the sequenceLine parameter
(default value is 60). If you want to save a long alignment as one unwrapped block,
increase this value (e.g. sequenceLine=1000)
Writing sequences in the alignment order
The sequences can be written in the alignment order with the following commands (they
can be store in a little macro)

 macro wrSeqAli ali_ s_file ("seq.fasta")
 l_showSstructure = no
 seqname = Name(ali_) # Name returns sarray of sequence names
 for i=1,Nof(seqname)
 write sequence fasta append $seqname[i] s_file
 endfor
 endmacro

Resorting alignment in the order of sequence input.
Upon alignment the source sequences get reordered according to similarity. If you want
to keep the original order you may use the reorderAlignmentSeq macro described
in the Align(ali_ I_newOrder) section and then write an alignment:

 read sequence s_icmhome+"zincFing"
 group sequence aaa
 align aaa
 reorderAlignmentSeq aaa
 write ali_new # reordered alignment

restoring the original name of the genbank sequencesThere is a method to swap the
ICM names of sequences with the names stored in the form of the comment containing
this text " Orig.name: "other_seq_name . If this comment exists (can be set with
set comment seq s)
See also: SEQUENCE.restoreOrigNames , String(ali_) function.

write binary

write binary [class1 class2 ...] [obj1 obj2 ...] [s_fileName |stdout]

write binary all [key=s_password] [s_fileName | stdout] [read only]
write specified ICM shell objects or all objects of a classes to a single, binary,
cross-platform file, or more accurately, database. The following data types are currently
supported:

alignment◊
distance # pairdistances, like hbonds etc.◊
grob◊
iarray◊
image◊
integer◊
logical◊
map◊
matrix◊
model # prediction and classification models◊
object◊
page◊
preference◊
rarray◊
real◊
sarray◊
sequence◊

write 347

slide◊
string◊
table◊
tree◊

The catalogue of the database can be obtained with the list binary command. The
default file name is "icm.icb", and the default extension is .icb (stands for ICm
Binary file). The system objects or the objects with property

Options:

* --all save all objects in the shell (system variables are skipped)
* --key= ~~s_password protect the file with a password. To open this file with the password, use the File menu (Open with password)
From the command line: to open a protected file, use
 read binary [all] [edit]
* --read --only : saves a file in a read only mode for other users.

Examples:

ii = {2 3 4}
rr = {2. 3.4 5.5}
g = Grob("CELL",{1. 1. 1.})
g2 = g*2. # twice as large
write binary iarray rarray grob # the default file is icm.icb
 Info> 4 icm shell objects icm.icb

list binary # looks at "icm.icb"
 1 ii iarray 20
 2 rr rarray 32
 3 g grob 1788
 4 g2 grob 1788

delete ii
read binary name={"ii"}
 Info> 1 icm shell objects read from icm.icb

write binary grob "aaa"
 Info> 2 icm shell objects aaa.icb

See also: list binary, read binary

write iarray

write [iarray] I_name [s_fileName]
write rarray

write [rarray] R_name [s_fileName]
write sarray

write [sarray] S_name [s_fileName]
write matrix

write [matrix] M_name [s_fileName]
write an array or a matrix to a disk file. Default file extensions are .iar, .rar, .sar,
or .mat, respectively.
See also: read iarray, read rarray, read sarray, read matrix.

write molcart

write molcart [mol | separator=s_sep [header]] table=s_dbtable
s_filename [connection_options]

Exports database table s_dbtable in SDF or CSV/TSV file format (with or without
header). If the format is not specified explicitly, it is guessed from the s_filename
extension.

348 write

The Molcart connection may be specified by connection_options .

See also: molcart, make molcart

write several arrays

write [{ column | database] } array1 array2 [s_fileName]
write arrays in the column or database format to a disk file. Default file extension is
.db
See also: read database.

writing tethers

If you imposed tethers between you current object and another object and you want to
quit the session and then restore you setup, you can use the following trick:

first let us create an object a_ly6. tethered to template a_x.
read alignment s_icmhome+"sx"
read pdb s_icmhome+"x"
build model ly6 a_x.m # a new object a_ly6. created and tethered

write string String(a_//T) "tTz.str" # tethered model atoms
write string String(a_//Z) "xTz.str" # x-template atoms
write object a_x,ly6. "tx.ob"

quit

% icm
read object "tx.ob"
read string "tTz.str" name="tTz"
read string "xTz.str" name="xTz"
set tether $xTz $tTz exact # tethers restored

write table

writing ICM table in text format write T_table1 [T_table2 ..] [field=
s_delimiter] [s_fileName]
write the T_table table to a disk file *.tab. It will have two header lines with table
name and field name information, followed by the values.
The default extension .tab is appended automatically. The ICM text table format has a
header which allows one to read this table back to icm with the read table command
Example:

 group table t {1 2 3} "a" {"one","two","three"} "b"
 t1=t[2:3]
 write t t1 "tt" # write both tables in one file
 delete table # read both tables

writing tables in CSV or TSV formats
write T_table1 [header] [separator= s_delimiter] [s_fileName]
if the separator or the s_fieldDelimiter variable contain just a simple symbol (e.g.
comma or tab), ICM will write a comma-separated or tab-separated table with the first
line containing the field names, e.g.

 group table t {1 2 3} "a" {"one","two","three"} "b"
 write t header separator="," "t.csv"
 unix cat t.csv
 a,b
 1,one
 2,two
 3,three

 write t separator="," "t.csv" # without header
 unix cat t.csv
 1,one
 2,two
 3,three

To read a table in comma-separated format with the headers, use the following
commands:

write 349

read table separator="," header name="t" "t.csv"

writing tables in a binary format
write binary T_table1 T_table2 .. s_file

write binary tables s_file
The most compact and fast format is the binary format. Any object can be saved to and
read from a binary project file with ".icb" (ICM-binary) extension.
See also write database T and write column.

Writing/exporting an sdf/mol file

write table mol s_sdfFileName [index] [compress]
writes an ICM chemical spreadsheet as a mol/sdf file. All the property columns are
added as feature records to individual mol-entries. Options:

index adds sequential order number as an additional property named IX (it
may be useful as an ID).

◊

compress skips 9 columns for each atom field, and unused bond fields in the
output .sdf file

◊

Example:

read table mol "ex_mol.mol" name="t" unique
write table mol t

write column

write column array1 array2 [s_fileName] [separator= s_Separators]
write arrays in a multi- column format to a disk file.
Examples:

 read column s_icmhome + "res.tab" # amino acid properties
 write column aa flexInd "tm.tab" # two columns

If you want to write all the entries of an ICM-table you may do the following.
Examples:

 read column s_icmhome + "res.tab" # a set of isolated arrays
 group table RES $s_out # create an ICM-table RES (s_out : array names)
 write RES # write in the 'table' layout
 write database RES # write table RES in the 'database' layout

Default file extension is .col.
See also: read column, show column. read table, show table.

write database

write database [html] { array1 array2 | table } [s_fileNameRoot]
write several arrays or a table in a database format to a file (usually tables are written in a
multi column format). This command can also be used to save a subset of arrays of a
table in a specific order. Option html writes the table with appropriate HTML tags. See
also read database write table, show database.
Example:

 resnam = {"ala" "glu" "arg"}
 reschg = { 0., -1., 1.}
 write database resnam reschg "a" # default extension ".db" will be added

 group table t resnam reschg
 write database t.reschg t.resnam "a" # reverse the order</tt>

350 write

write drestraint

write drestraint [as] [s_fileNameRoot]
write distance restraints of the current object to a file.
See also: drestraints and drestraint types.

write drestraint type

write drestraint types
write drestraint types to a file. You may define your own types with the set
drestraint type command or by editing a *.cnt file.

write factor

write [factor] factor_Name [s_factorFileNameRoot]
writes crystallographic structure factors to a file.

write gamess

write gamess [charge|energy|cartesian] [memory=i_Mb] [store=i_intsize]
[fix=vs] [type="DFT"] [new] as

See also:

gamess◊
read gamess◊

write grob

Commands for exporting graphical objects.
write grob off g_name [s_fileName]

Export in Object File Format (OFF). This is a simple file format supporting points, faces
(triangles), edges (lines), normals, per-vertex colors. The default extension is ".off".

write grob wavefront g_name [s_fileName]

Export in Wavefront OBJ/MTL file format. Usually the file will be exported in many
files. The object geometry and structure (points, faces, lines, groups of points) are stored
in an ".obj" file. Coloring (material) properties are stored in a separate ".mtl" file.
Material textures are exported in the image format in which they are stored, usually JPEG
or PNG.
write {grob | g_name} [s_fileName] [append]
Write/append to a disk file. If g_name is not specified, all grobs are written. Depending
on object features, they may be exported in OFF or Wavefront OBJ file formats.

See also: write image, write postscript, read grob.

write html

write html T s_outputHtmlFileName [link T.S_1 s_linktype1 ...][split= n]
[none]
writes the T_ table with HTML tags to a file. Interpret web links according to the web
link types described in the WEBLINK.DB array. If the table contains chemicals, ICM
creates a file with the compound images using Peter Ertl's JME classes (see also the
s_javaCodeBase variable).

Arguments and Options

link table_column1 s_link_type1◊

write 351

split : divide a table with large number of rows into tables n rows each to
speed up the rendition.

◊

none : suppress Molsoft Logo.◊
Example:

 read sequence "zincFing.seq"
 find prosite 1znf_m 0.3
 show SITES
 write SITES "tmp.htm" link SITES.AC "AUTO"
 web SITES link SITES.AC "AUTO"

See also:

show html,◊
web T_◊
write string s_htmlText s_file◊

write image

write image [{ png | targa | gif | rgb }] [display] [print] [postscript
[{ print | preview }]] [compress] [stereo] [{ color | bw }] [window=
I_xyPixelSizes] [store] [s_fileName] write the current screen image to a file. The
default image file format is tif . The png-format is the most compact and is
recommended for web-publishing. The default settings are stored in the IMAGE table.
Some of them can be overridden by the following options:

display - allows one to view the saved image or postscript image file. The
viewer is defined by the s_imageViewer variable for targa, gif, rgb and tif
images and by the s_psViewer variable for the postscript images.

◊

postscript - write Adobe postscript-bitmap file rather than TIFF-file. See
also write postscript command which generates vectorized scalable
high quality postscript files.

◊

preview - add low-resolution preview to postscript file for some
EPS-compliant image viewers (i.e. Irix showcase®). Resolution, and therefore
the size, of the added preview is defined by the
IMAGE.previewResolution (default 10).

◊

print - print the postscript file. It will not work for non-postscript images, in
which case you may use the display option and print from your image viewing
program instead.

◊

compress - use packbits lossless compression standard for .tif files.
Compression of this kind is currently a standard feature of all baseline
TIFF-reading programs. Compression is a standard feature of the .gif and .png
formats.

◊

stereo - generate stereo image even from the mono display. Tiff-files preserve
the image screen dimensions for each image in a stereo-pair. Stereo-base for
postscript files is controlled by the IMAGE.stereoBase parameter and
equals 2.35" (60mm) by default.

◊

store - generates an internal image in ICM album (see also store image)◊
color or bw - color or black-and-white options surpass IMAGE.color
logical variable.

◊

window= I_xyPixelSizes - generate image of any arbitrarily large resolution
(e.g. window=3*View(window) to triple the resolution). Suppose that you
want to make a poster of 4613 by 2888 pixels. This resolution is not achievable
on a 1200x1024 screen. The image area will be divided into many squares and
the program will merge them into one image of large resolution. This option will
not work with string labels. Example:

 nice "1crn" # resize the image
 delete label
 IMAGE.compress = no #just a plain uncompressed image
 write image window={4000,2700} # for slides

 write image window=2*View(window) # double the res.

◊

IMAGE.generateAlpha logical variable controls if the alpha channel information is
added to the SGI rgb and tif image files. This additional channel describes opacity of
the image pixels and makes the background transparent. Images generated with alpha
channel can be nicely superimposed in the IRIX showcase since their backgrounds are

352 write

transparent.
Examples:

 display a_1crn. ribbon
 write image "a" # a.tif image - about 1400 kB
 write image "p" compress # p.tif image - about 88 kB
 write image postscript stereo display "aaa.eps"
 write image 2*View(window) # hi-res, may screw up labels
 unix lp -c a.eps # print if you like the result

See also: write grob, write png - a different version of the png writer: does not
allow arbitrary resolution, but allows transparent background, write postscript.

write 2D image

write image image-array [S_filenames|s_directory_to_save|s_single_file_name]

save images stored in ICM into the specified location.

Example:

nice "1crn"
make 3 images with default names and add them to the default album 'album'
make image
make image
make image
write image album[1] "myimage.png"
write image album[1:2] {"img1.png","img2.png"} #specify names to be used
write image album s_tempDir #save all images into the s_tempDir

write 2D chemical image

write image [chemical|chemArray] [s_fileName] [window = { i_width i_height }]
[display = s_chemViewString] [IMAGE.bondLength2D = r_bondLengthInch] [
IMAGE.lineWidth2D = r_lineWidth] [transparent] [sstructure=s_smarts]

write chemical depiction to a file. File extension defines image type. If multiple
chemicals are provided, separate file will be created for each one.

You can increase resolution by adjusting IMAGE.bondLength2D and/or window
argument.

Chemical view options can be adjusted by providing display argument. See set
property chemical view for format description.

Use transparent option to generate transparent background.

The display option:Each character in s_chemViewString codes single chemical view
option.

"H" : Hetero-atom hydrogens◊
"T" : Terminal hydrogens◊
"S" : Atom stereo labels◊
"X" : Do not show explicit hydrogens◊
"A" : Aromatic rings"◊
"C" : Show 'chiral/racemic' flag◊
"3" : Do not show 3D as 2D◊
"U" : Unique atom classes◊
"N" : Atom numbers◊
"M" : Monochrome atom labels◊
"W" : Don't show atom text labels. Colors half of the atom's adjustment bond
with the element color (Like wire in 3D)

◊

"R" : Don't show atom text labels. Draw color square instead.◊

Example:

write image Chemical("CCO") "ethanol.png" IMAGE.bondLength2D = 0.8
write image Chemical({"C1CCN(CC1)c1ccccc1", "CCN(C)c1ccccc1" }) display="AR" # aromatic rings + color square instead atom labels

write 353

write alignment image

write image alig [s_fileName] [i_resIncrease=2] delete

write alignment image to a file. File extension defines image type.

You can increase resolution by providing integer argument.

You can set alignment view property either manually in GUI or using set property
alignment command.

Example: (export all alignments in high resolution with profile enabled)

S_al = Name(alignment)
for i=1,Nof(S_al)
 s_al = S_al[i]
 set property $s_al 2048 # turn on the profile
 write image $s_al Name(s_al) + ".png" 4 delete # write high-res (x4) png image
endfor

write index

General text and specialized content (e.g. write index mol) index files.

General text parsing write index s_inputFile pattern=s_startPattern
[add=s_endPattern] [s_outIndexFile]

general indexing of a text file, Example in which .sdf files are index as text (compare
with write index mol)

 write index "/tmp/huge.sdf" pattern="" add="$$$$" # file huge.inx will be saved
write index mol "/tmp/huge.sdf" # another method that will create an entry-by-entry index

See also: read index, read index table, Sarray index

Specialized index files

write index [mol | mol2 | fasta | swiss | mmcif] s_inputFile [s_outIndexFile]

write index [swiss | mol | mol2 | fasta] T_dbDescription [s_outIndexFile]
calculate and write index for a database file described by the control table
T_dbDescription, or by the s_inputFile in the short form of this command.

Output

the index file◊
i_out contains the number of entries indexed◊

Simple example:

write index mol "/data/nci.sdf" "nci.inx" # creates nci.inx file
show i_out
read index "nci" name="x" # creates internal index table x
Path(x) # returns /data/nci/
read table x[1:100] # load first 100 molecules to ICM

The T_dbDescription table, optional for mol/sdf and mol2/ml2 files, contains
information about the database file (files) and fields to be indexed. It may have the
following components in the header:

DIR - string directory name◊
FI - sarray of database files◊
EXT - extension of the database files◊

After the header there is a string array containing the list of fields. To create this table
either define it in a file or use the group table command. All text fields (except data)
are hashed for fast searching.

The fasta option allows one to index the NCBI non-redundant databases.

354 write

See also: makeIndexChemDb macro to do indexing in one step, mol, mol2 .
Example:

 write index mol "drugs.sdf" # the index file is saved to the current directory
 read index "drugs"
 write index mol "./drugs.sdf"

 group table t {"ID","DE","KW","SQ"} "fd" header "/data/swissprot/" \
 "DIR" {"sprot"} "FI" ".dat" "EXT"
 # we created control table t
 write index swiss t "/data/icm/inx/SWISS.inx" # make index and save to a file
 read index "/data/icm/inx/SWISS.inx" # read index
 show SWISS[2:5]
 show SWISS.ID=={"12AH_CLOS4","1431_LYCES","B3AT_CHICK"}
 read sequence SWISS.DE=="DNA-BINDING"

See also: Path (T_indexTable), write-index-mmcif

write index blast

write index sequence s_blastRootFileName
create a set of blast-formatted binary files for searches with the find database
command. The command will use all the sequences currently loaded into the ICM-shell
and will create the following compact binary files (the first three files are the same as
those generated by the setdb blast command):

name.psq binary sequences◊
name.pin pointers/index◊
name.phd sequence headers◊
name.psa # optional: relative solvent accessibilities for each residue.◊

The relative solvent areas file is saved only if the sequence was generated from an object
in which the areas had been calculated with the show area surface command. If the
.psa file is present, ICM will modulate the scores with the accessibilities (it will be
more permissive for the accessible residues).

If you want to do the opposite (i.e. given the three or four blast files, generate one fasta
sequence file), use the
find database write s_DBpath output= s_fastaFile
command.
Simple example (indexing can also be done with the blast setdb routine):

copy to the current directory and edit the icm.cfg file
make sure that MnSequences is larger than the number of
sequences in your database
#
 read sequence "fak.seq" # fasta formatted
 write index sequence "/tmp/db1"
 delete sequences
 a=Sequence("MERTDITMKH KLGGGQYGEV YEGVWKKYSL TVAVKTLKED TMEVEEFLKE")
 find database a "/tmp/db1" 0.001

A more direct way of making the blast files is via the formatdb utility, e.g.

formatdb -i /data/blast/dbf/FASTA/pdbaa -n /tmp/p_db
./icm
read sequence swiss web "10KD_VIGUN"
find database fast=10 10KD_VIGUN "/tmp/p_db"

See also:

write index fasta s_file.fasta s_file.inx◊

write library

write library [append] [auto] as_entryAtom [exit= as_exitAtom]
s_libFileRoot
save a selected molecule, residue or a fragment as an ICM-library entry. Use set
charge, set bond type and, possibly, build hydrogens before writing an
entry. We recommend you to do this operation in an interactive session: display your
molecule and Ctrl-Click the first and last atoms if needed. There are two different

write 355

situations:
read sequence "aaa.seq"
the molecule/residue/fragment does not belong to an ICM-type object. For
example, you have a pdb-file with a new molecule you would like to create an
ICM-library entry from. In this case do NOT use option auto and note that the
resulting entry will only be a draft, since energy parameters of atoms (atom
codes plus related types of van der Waals, hydrogen bondings
solvation), as well as parameters of torsions, bond angles,
phase angles, and bond lengths will have to be further manually
adjusted. Enter the command and you will be prompted for the first and the last
atoms of the entry. The purpose of this procedure is to create a regular ICM-tree,
create extra bonds if there are cycles and give atoms unique names. Some
additional editing of the entry may be required to correct fixed and free torsions
suggested by the program. To declare a certain variable free, enter '+' in the
appropriate field.

1.

the molecule/residue/fragment belongs to an ICM-type object. In this case you
may use option auto since all the information is there already. The program
only needs to extract the molecular subtree according to the specified selection.

2.

Example:

 build string "nter glu cooh" # build glutamic acid residue
 strip # convert it to a non-ICM object
 write library a_def./2/ha "./tm" name ="new" auto # reroot it
Now the entry atom is a_//hg2
 LIBRARY.res = LIBRARY.res // "./tm"
 build string "new" # read the rerooted residue
 display

write map

write m_map [s_fileName]
write specified map to a binary file with specified file.
write { map | m_map1 m_map2 ... }
write all maps or specified maps to corresponding files (the names for the files are
generated from map names, the m_ prefix is removed from the file names).
write xplor m_map ... [s_fileName]
write the specified map to a Xplor-formatted file.
Example:

 make map potential "ge,gc" Box(a_)
 m_gc... done
 Info> Map m_gc created. GridStep=0.50 Dimensions: 16 11 17, Size=2992
 m_ge... done
 Info> Map m_ge created. GridStep=0.50 Dimensions: 16 11 17, Size=2992
 write m_ge m_gc
 Info> 1 map written to file ge.map
 Info> 1 map written to file gc.map

write model: update or create the loop database file

write model [append] s_lpsFile
writes a compressed representation of the protein structure to the specified loop file (
"def.lps" by default). To create a large database, read the object list and write a loop
over all objects, e.g.

prepare pdbUniq list and ..
 read sarray "pdbUniq.li"
 for i=1,Nof(pdbUniq)
 read object s_xpdbDir+pdbUniq[i]
add further filters
 write model append "icm.lps"
 delete object
 endfor

To make the program use this file , redefine the LIBRARY.lps file name to, say
"./icm.lps"

356 write

write mol

write mol [exact] as_select [s_fileName]
write selected atoms in the mol -file format. By default the formal charges (see the set
charge command) are saved. If the selection contains multiple objects, each object
will be treated as a separate mol entry in an .sdf file. (e.g. write mol a_*.H
"tmp.sdf" Multiple molecules inside each object will be included as parts of one mol
entry.

Options

exact: preserve the ICM-atom names (like c1, c2).◊
charge: write the MCHG section containing the atomic real charges.◊

See also read mol "file.sdf", show mol "file".

write mol2

write mol2 [exact] [formal] as_select [s_fileName]
write selected atoms in the mol2 -file format (extension .ml2). Options:

exact preserves the ICM-atom names (like c1, c2).◊
formal writes formal atomic charges instead of the real ones. Adds
USER_CHARGES (XXXXXX) tag to the header

◊

See also read mol2 "file", show mol2 "file".

write movie

write movie s_file [on [exact]] [video_options]

- create a movie file. Open it for writing.

Available video_options:

size= r_bitsPerSecPerPixel (default = 4.). There is a tradeoff between file size
and movie quality. Larger number means high quality and large files.

◊

frame= i_framesPerSecond (default = 25)◊
group= i_gop (default = 100) . GOP stands for 'Groups Of Pictures' that is a
group used for compression

◊

name= s_title . The movie title.◊
comment= s_comment◊
set= s_codecflags◊
heavy - use best video recording quality possible◊

Some useful related shell variables:
MOVIE.quality (real) the default number used for the 'size' parameter
MOVIE.qualityAuto
(logical)

lets the engine to increase the video quality for movies
produced in smaller resolution

When the on option is specified this command also starts frame grabbing (see below), so
that one write movie command may be used instead of two.

write movie on [exact]

- start frame grabbing.

Frame grabbing is a video recording mode which allows the user to create movies in
interactive mode. The exact option specifies when the frames are saved

no option: frames are saved every 25 msec. This mode allows one to record ICM
session activity in real-time.

◊

with exact option frames are saved every time the view is updated (the
frame-based timing). This mode is more useful when used in scripts, as it is
possible to control updates (see e. g. display) from an ICM script. The

◊

write 357

frame-based timing generates nicer movies when the computer is not fast
enough for real-time grabbing.

Update-based frame grabbing works correctly with time-based ICM features, such as
rocking/rotation, smooth slide transitions, display
trajectory, display stack. When the frame grabbing is enabled, these
commands slow down the graphics updates if necessary to provide movie frame grabbing
at the requested frame rate (e. g. 25 frames per second).

write movie off

- stop frame grabbing

write movie frame [smooth] [nframes=1] [antialias]
[background|transparent=r]

- save nframes individual frames

smooth is a very powerful option allowing to create blending effects. It writes nframes
to make a smooth transition from the previous frame. Each frame is an interpolation
between the previous and current frame. If the option smooth is used when writing the
first movie frame, fade-in effect is created, i. e. the command writes blended frames
transforming empty scene into the current picture.

Option background may be used in combination with smooth to create a fade-out
effect from the last frame to empty background. In general, write movie frame
background writes an empty scene frame.

Option antialias applies full-scene anti-aliasing, which improves the video quality.
In GUI also consider 'high quality' button and shadows (in combination with option
exact)

Option transparent allows one to create frames which are blended with the
background to create fade-in/fade-out effects.

write movie exit

- stop recording and close the file.

Example with smooth transition effects:

read pdb "1crn"
display
write movie "ForCannes.mov"
display wire
write movie frame 5
display ribbon
write movie frame 45 smooth
for i=1,100
 rotate view Rot({0. 1. 0.} , -1.)
 write movie frame
endfor
undisplay
write movie frame 50 smooth
write movie exit

Example with still image, fade-in and fade-out effects.

read pdb "1ekg"
display a_
color background lightblue
write movie "ItCameFromTheSky.avi"
write movie frame smooth 25 # fade-in (25 frames is one second)
write movie frame 25 antialias # still image
write movie frame smooth background 25 # fade-out
write movie exit

Example featuring rotation and a more complicated way of creating fade-in/fade-out
effects:

read pdb "1ekg"
display a_
write movie "Vertigo.mov"

358 write

for i=1,50
 write movie frame transparent=(51-i)/50. # fade-in
endfor
for i=1,100
 rotate view Rot({0. 1. 0.} , -1.)
 write movie frame # write rotated image
endfor
for i=1,50
 write movie frame transparent=i/50. # fade-out
endfor
write movie exit

write object

write object [options] [as_selection] [s_fileName [rename]]
write an ICM molecular object (or many selected ICM-objects) in binary ICM format
to a file. A single object can be renamed in the file according to the s_fileName, if option
rename is specified. Important: only whole ICM object may be written by this
command, and file extension will always be .ob.
Options (defaults shown in bold):

append : append to a multiple-object file◊
rename : rename the single object to s_fileName (leave out path and extension)
.

◊

short : write a compressed file for non-ICM objects without b-bactors and
occupancies.

◊

strip : write a stripped object (i.e. drop information about variables and
rigid bodies present in an object of the ICM type).

◊

auto={yes| no} : if yes the program automatically identifies which atom
requisites to save. For example, if molecule is displayed, the view will be saved
with the object. Properties such as occupancy and charge are considered
essential if the values are not identical for all the atoms. If auto=no, the
OBJECT table controls the output.

◊

occupancy={yes|no} : occupancy field◊
charge ={ yes|no} : partial atomic charges◊
bfactor ={ yes|no} : b-factors◊
display ={yes| no} : the current view of your molecular object(s), including
graphics planes The written display attributes are automatically restored
upon reading of the object.

◊

library={yes|no} : currently not used.◊
See also: read object, write pdb, OBJECT, strip .
Example:

 read object s_icmhome+"crn.ob"
 build string "se ala his" name="AH" # second object named "AH"
 write object a_2. "alahis" rename # rename obj. to "alahis"
 display a_1./1:40 ribbon # display and save with graphics attributes
 display a_1./12 cpk
 display a_2. xstick
 write object a_*. "twoobj" display=yes # both objects in one file
 write object a_1. append "twoobj" # yet another object

write object simple

write object simple [as_selection] [s_fileName]
write a compressed object. The information preserved in the compressed description of
the object is limited to 3 coordinates and certain atom names (non-protein atom names
will not be preserved and reduced to just one character) plus all residue and molecule
requisites. For a PDB-type file, a simple object is the most compact for store and fastest
to read. They are used in the compact fold library.

write object (parray)

write object objParray s_file

writes object parray into .ob file. This file can be read either with read object or
read object parray commands.

write 359

write pdb

write pdb [exact] [charge] [nosort][as_selection] [s_fileName]
write a molecular (sub)object in PDB format. Normally atoms of each amino acid are
sorted in the following order:

ATOM 19 N GLN O 3 -4.565 0.000 -4.592 1.00 20.00
ATOM 20 CA GLN O 3 -4.712 0.000 -6.037 1.00 20.00
ATOM 21 C GLN O 3 -6.194 0.000 -6.420 1.00 20.00
ATOM 22 O GLN O 3 -7.063 0.000 -5.549 1.00 20.00
<i>the rest</i>

Also the n-terminal nitrogen and its hydrogens are assigned to the first amino acid.
Options are the following:

charge saves atomic charges instead of occupancies and atomic radii instead
of B-factors;

◊

exact keeps the names of hydrogen atoms the same as in ICM objects (i.e. the
first character is 'h'). Without this option names of hydrogen atoms are
transformed like this:

 h11 → 1H1
 h12 → 2H1

◊

nosort retain the original ICM order of atoms◊
Default file extension is .pdb.
See also: write object, read pdb.

write png

write png [transparent] [window= I_xyPixelSizes] [s_fileName]

this is a new version of the png writer (write image png). This version supports
option transparent that makes the background transparent. Options:

transparent sets alpha to max value for all pixels with background color.
Without this option the alpha values are set to 0.

◊

window = { Width, Height } in pixels. If you want to specify just one size and
determine the second from the aspect ratio, use zero, e.g. window={0,600}
to set height to 600 pixels

◊

s_fileName self-evident◊

write postscript

write postscript [display] [stereo] [preview] [{ color | bw | dash]}
[i_quality] [r_gammaCorrection] [s_filename]
create vectorized postscript model of the screen image. Instead of the bitmap snapshot
this command generates lines, solid triangles and text strings corresponding to the
displayed objects. Since the postscript language is directly interpreted by high-end
printers, the printed image may be even higher quality than the displayed image. The
final resolution is limited only by the printer since the original image is not pixelized.
Warning: there may be inevitable side-effects for some types of solid images at the
intersection lines of solid surfaces (i.e. large scale cpk representation, hint: use
display skin instead).
The default settings are stored in the IMAGE table. Some of them can be overridden by
the following options and arguments:

reverse - makes white background in the saved postscript file.◊
display - allows one to view the saved postscript file. The viewer is defined
by the s_psViewer variable.

◊

stereo - generate stereo image even from the mono display. Stereo-base is
controlled by the IMAGE.stereoBase parameter and is 2.35" (6cm) by
default.

◊

preview - generates postscript preview according to the IMAGE.previewer
command string and the IMAGE.previewResolution parameter.

◊

color or bw - color or black-and-white options surpass IMAGE.color
logical variable.

◊

360 write

dash - is a great variant of the black-and-white option to generate lines of
different width and style. The line colors of your screen image are interpreted
according to the following table:

gold - double solid black line⋅
pink - triple solid black line⋅
magenta - dash1⋅
orange - dash2⋅
brown - dotted line⋅
the rest - solid black line⋅

Examples:

 read object s_icmhome+"crn.ob"
 display a_crn. # display wire model of crambin
 color a_//ca,c,n pink # triple width backbone
 color a_/arg/!ca,c,n magenta # dashed lys side chains
zoom your picture to fill the whole graphics window
 write postscript dash stereo display

◊

i_quality (default=3, possible range: 1:100) - defines a parameter in a smoothing
procedure. Each side of an elementary triangle is divided into i_quality sections
and color of all the i_quality2 smaller triangles is calculated to yield smooth
transitions. Optimal value of the parameter depends on an image. Only large
scale images may require i_quality values above 10. Only in an extreme case of
a single triangle on a page with red, blue and green vertexes, one may need
i_quality of 100.

◊

r_gammaCorrection allows one to lighten or darken the image by changing the
gamma parameter. A gamma value that is greater than 1.0 will lighten printed
picture, while a gamma value that is less that 1.0 will darken it. You may adjust
your gamma correction parameter for your printer with respect to your display
and add this setting to the _startup file.

◊

Examples:

 read object s_icmhome+"crn.ob"
 display a_crn. brown skin # molecular surface
 # Hugh wants to have a look
 write postscript 1 1. "divine_brown" display
 # change parameters for the printer
 write postscript 5 2. "divine_brown"
 # and print it
 unix lp -c divine_brown.eps

See also: write image, write grob.

write pov

write pov [image] [r_aspectRatio] [s_fileName]
writes a pov-ray object file which can be processed with the pov-ray ray-tracing program.
Example:

 buildpep "ala his trp"
 display cpk
 make grob image
 write pov "x"
% pov-ray x.pov

write sequence

write { sequence | seq } [{ fasta | swiss | pir | gcg | msf }] [s_fileName]
write all sequences or the specified sequence seq_ to a file in one of specified formats.
The default format is the fasta format.

write 361

write session

write session [s_fileName]
write commands from an ICM session to a file. Default file name is "_session.icm". This
is a simple text file with icm commands. Feel free to edit the file
Example:

 ..
 a=1
 history 10
 write session
 Info> 4 history lines written to file _session.icm

See also: history and delete session commands.

write stack

write stack [simple] [s_fileName]
write the current state of the conformational stack to a disk file. Starting from
May, 2003, version ICM3.022, the stack file is compressed by default. The stack file is
not compressed if the simple option is used. Default file extension is .cnf.
See also: show stack, delete stack, read stack, read conf.

write system preference

write system preference [preferenceName]

saves the persistent user preferences to a operating system specific location (
~/.config/Molsoft.conf on Unix, plist file on Mac, registry on Windows, see
preference system for details). Note that only the registed persistent preferences
can be saved this way, any other parameters, new or existing need to be changed in a
user_startup.icm script or directly in a command or macro.

This command tracks if a preferences has been changed The command without additional
arguments will save ALL CHANGED preferences. Examples:

 write system preference # save modified preferences
#
 TOOLS.edsDir = "/data/eds/"
 write system preference TOOLS.edsDir # save only this preference

write vs_var

write [vs_variables][s_fileName]
write a variable selection vs_ to a disk file.
Default file extension is .var .
See also: read variable.
Functions
ICM-shell functions are an important part of the ICM-shell environment. They have the
following general format: FunctionName (arg1, arg2, ...) and return an ICM-shell
object of one of the following types: integer, real, string, logical, iarray,
rarray, sarray, matrix, sequence, profile, alignments, maps,
graphics objects, a.k.a. grob and selections.
The order of the function arguments is fixed in contrast to that of commands. The same
function may perform different operations and return ICM-shell constants of different
type depending on the arguments types and order. ICM-shell objects returned by
functions have no names, they may be parts of algebraic expressions and should be
formally considered as 'constants'. Individual 'constants' or expressions can be assigned to
a named variable. Function names always start with a capital letter. Example:

 show Mean(Random(1.,3.,10))

362 write

Abs

absolute value function.
Abs (real) - returns real absolute value.
Abs (integer) - returns integer absolute value.
Abs (rarray) - returns rarray of absolute values.
Abs (iarray) - returns iarray of absolute values.

Abs (map) - returns map of absolute values of the source map.

Examples:

 a=Abs(-5.) # a=5.
 print Abs({-2.,0.1,-3.}) # prints rarray {2., 0.1, 3.}
 if (Abs({-3, 1})=={3 1}) print "ok"

Acc

accessibility selection function. It returns residues or atoms with relative solvent
accessible area greater than certain threshold. Important: The surface area must be
calculated before this function call. The Acc function just uses surface values, it does not
reevaluate them. Therefore, make sure that the show area command (or show
energy, minimize , etc. with the "sf" surface term turned on), has been executed
before you use the Acc function. If you specify the threshold explicitly, it must range
from 0.0 to 1.0, otherwise it is set to 0.25 for residue selections and 0.1 for atom
selections.
Acc (rs , [r_Threshold])
- returns residue selection, containing a subset of specified residues `rs_ for
which the ratio of their current accessible surface to the standard exposed surface is
greater than the specified or default threshold (0.25 by default). ICM stores the table of
standard residue accessibilities in an unfolded state calculated in the extended
Gly-X-Gly dipeptide for all amino acid residue types. It can be displayed by the show
residue type command, or by calling function Area(s_residueName), and the
numbers may be modified in the icm.res file.
The actual solvent accessible surface, calculated by a fast dot-surface algorithm, is
divided by the standard one and the residue gets selected if it is greater than the specified
or default threshold. (r_Threshold parameter is 0.25 by default).
Acc (as_select, [r_Threshold])
- returns atom selection, containing atoms with accessible surface divided by the
total surface of the atomic sphere in a standard covalent environment greater than the
specified or default threshold (0.1). Accessibility at this level does not make as much
sense as at the residue level. The standard surface of the atom was determined for
standard amino-acid residues. Note that hydrogens were NOT considered in this
calculation. Therefore, to assign surface areas to the atoms use
show surface area a_//!h* a_//!h*
command or the
show energy "sf"
command.
You may later propagate the accessible atomic layer by applying Sphere(as_ , 1.1),
where 1.1 is larger than a typical X-H distance but smaller than the distance between two
heavy atoms. (the optimal r_Threshold at the atomic level used as the default is 0.1, note
that it is different from the previous).
Examples:

 # let us select interface residues
 read object s_icmhome+"complex"
 # display all surface residues
 show surface area
 display Acc(a_/*)
 # now let us show the interface residues
 display a_1,2
 color a_1 yellow
 color a_2 blue
 show surface area a_1 a_1 # calculate surface of
 # the first molecule only

Functions 363

 # select interface residues
 # of the first molecule
 color red Sphere(a_2/* a_1/* 4.) & Acc(a_1/*)

 read object s_icmhome+"crn"
 show energy "sf"
 display
 display cpk Acc(a_//* 0.1) # display accessible atoms

 show surface area # prior to invoking Acc function
 # surface area should be calculated
 color Acc(a_/*) red # color residues with relative
 # accessibility > 25% red

Acos

arccosine trigonometric function Returns angles in degrees.
Acos (real | integer) - returns the real arccosine of its real or integer argument.
Acos (rarray) - returns the rarray of arccosines of rarray elements.
Examples:

 print Acos(1.) # equal to 0.
 print Acos(1) # the same

 print Acos({-1., 0., 1.}) # returns {180. 90. 0.}

Acosh

inverse hyperbolic cosine function.
Acosh (real | integer) - returns the real inverse hyperbolic cosine of its real or
integer argument.
Acosh (rarray) - returns the rarray of inverse hyperbolic cosines of rarray
elements.
Examples:

 print Acosh(1.) # returns 0
 print Acosh(1) # the same

 print Acosh({1., 10., 100.}) # returns {0., 2.993223, 5.298292}

Align

family of the alignment functions. These function return an alignment icm-shell
object and perform

sequence alignment (with the Needleman and Wunsch algorithm with
zero gap end penalties (ZEGA),

◊

structural alignment, or◊
sub-alignment extraction◊

Pairwise sequence alignment or sequence-structure
alignment

Align ([sequence1, sequence2] [area] [M_scores])

- returns ZEGA- alignment. If no arguments are given, the function aligns the first two
sequences in the sequence list. For sequence alignments, the ZEGA-statistics of structural
significance (Abagyan, Batalov, 1997) is given and can be additionally
evaluated with the Probability function. The reported pP value is
-Log(Probability,10).

Returned variables:

i_out - the number of identical residues in the alignment◊
r_out - contains Log(Probability_of_structural_dissimilarity) only for
pairwise alignments

◊

364 Acc

r_2out - percent identity of the alignment.◊

Simple pairwise sequence alignment
Align()
Align(seq1 seq2) - returns an alignment. The alignMethod preference allows you
to perform two types of pairwise sequence alignments: "ZEGA" and "H-align". If
you skip the arguments, the first two sequence are aligned.
Example:

 read sequences s_icmhome+"sh3.seq" # read 3 sequences
 print Align(Fyn,Spec) # align two of them
 Align() # the first two
 a=Align(sequence[1] sequence[3]) # 1st and 3rd
 if(r_out > 5.) print "Sequences are struct. related"

Aligning DNA or RNA sequencesMake sure to read the dna.comp comp_matrix
before using the Align function, e.g.

a=Sequence("GAGTGAGGG GAGCAGTTGG CTGAAGATGG TCCCCGCCGA GGGACCGGTG GGCGACGGCG")
b=Sequence("GCATGCGGA GTGAGGGGAG CAGTTGGGAA CAGATGGTCC CCGCCGAGGG ACCGGTGGG")
read comp_matrix s_icmhome+"dna.cmp"
c = Align(a,b)

Aligning with custom residue weights or weights according to surface accessible
area
Align(seq1 seq2 area)

Option area will use relative residue accessibilities to weight the residue-residue
substitution values in the course of the alignment (see also accFunction).
The weights must be positive and less than 2.37 . Try to be around or less than 1. since
relative accessibilities are always in [0.,1.] range. Values larger than 2.37 do not work
well anyway with the existing alignment matrices and gap parameters. Use the Trim
function to adjust the values, e.g. Trim(myweights , 0.1,2.3)).
E.g.

 read pdb "1lbd"
 show surface area
 make sequence
 Info> sequence 1lbd_m extracted
 1lbd_a # see the relative areas
 read pdb sequence "1fm6.a/" # does not have areas
 Info> 1 sequence 1fm6_a read from /data/pdb/fm/pdb1fm6.ent.Z
 ali3d = Align(1lbd_a 1fm6_a area)

This can also be used to assign custom weights with the following commands

 set area seq1 R_weights # must be > 0. and less than 2.37
 Align(seq1 seq2 area)

Introducing positional restraints into the alignment matrix
Align(seq1 seq2 M_positionalScores)
If sequence similarity is in the "twilight zone" and the alignment is not obvious, the
regular comp_matrix{residue substitution matrix} is not sufficient to produce a correct
alignment and additional help is needed. This help may come in a form of the positional
information, e.g. histidine 55 in the first sequence must align with histidine 36 in the
second sequence, or the predicted alpha-helix in the first sequence preferably aligns with
alpha-helix in the second one.
In this case you can prepare a matrix of extra scores for each pair of positions in two
sequences, e.g.

 seq1 = Sequence("WEARSLTTGETGYIPSA")
 seq2 = Sequence("WKVEVNDRQGFVPAAY")
 Align()
 # Consensus W.#. .~~.~G%#P^
 WEARSLTTGETGYIPS--
 WKVE--VNDRQGFVPAAY

 m = Matrix(17,16,0.)
 m[10,4] = 3. # reward alignment of E in seq1[10] and E in seq2[4]
 Align(seq1 seq2 m)
 # Consensus W.# E ~G%#P^
 WEARSLTTGE----TGYIPS--
 WKV------EVNDRQGFVPAAY

Align 365

The alignSS macro shows a more elaborate example in which extra scores are prepared
to encourage alignments of the same secondary structure elements.
Warning. The alignment procedure is rather subtle and may be sensitive to the gap
parameters and the comparison matrix. Avoid matrix values comparable with gap
opening penalty.

See also: Probability(ali ..) for local alignment reliability.

Local pairwise structural alignment

Two types of structural alignments or mixed sequence/structural alignments can be
performed with the Align function.
Align(seq_1 seq_2 distance [i_window] [r_seq_weight]) - performs local

structural alignment, using distance RMSD as structural fitness criterion. The RMSD is
calculated in a window i_window (default 10) and the dynamic programming algorithm
then subtracts the window averaged local sequence alignment score multipled by the
r_seq_weight >= 0. The sequence weight can be any positive number or zero.
Align(seq_1 seq_2 superimpose [i_window] [r_seq_weight]) - performs local
structural alignment, using superposition followed by coordinate RMSD calculation as
structural fitness criterion. The RMSD is calculated in a window i_window and the
dynamic programming algorithm subtracts the local sequence alignment scores multipled
by r_seq_weight .
In both cases the function uses the dynamic algorithm to find the alignment of the locally
structurally similar backbone conformations.
The alignment based on optimal structural superposition of two 3D structures may be
different from purely sequence alignment
Preconditions:

sequences must be linked to 3D molecules to access the coordinate
information;

◊

two 3D structures must have superposable subsets◊
The residue-label-carrying atoms (see the set label a_ command) will be used for
structural superpositions. r_seq_weight is used to add sequence amino acid substitution
values to the 3D similarity signal.

See also: align ms1 ms2 function

Deriving an alignment from tethers between two 3D objects
Align (ms) - returns alignment between sequences of the specified molecule and
the template molecule to which it is tethered. The alignment is deduced from the tethers
imposed.

Example:

 build string "se ala his leu gly trp ala" name="a" # obj. a
 build string "se his val gly trp gly ala" name="b" # obj. b
 set tether a_2./1:3 a_1./2:4 align # impose tethers
 show Align(a_2.1) # derive alignment from tethers
 write Align(a_2.1) "aa" # save it to a file

Extracting pairwise alignment sequences from a multiple
alignment

Align (ali, seq_1, seq_2) - returns a pairwise sub- alignment of the input
alignment ali_, reorders of sequences in the alignment according to the order of
arguments.
Extracting a multiple alignment of a subset of sequences from a multiple alignment
Align (ali, I_seqNumbers) - returns a reordered and/or partial alignment .
Sequences are taken in the order specified in I_seqNumbers.

Examples:

 # 14 sequences
 read alignment msf s_icmhome + "azurins"
 # extract a pairwise alignment by names
 aa = Align(azurins,Azu2_Metj,Azur_Alcde)

366 Align

 # reordered sub-alignment extracted by numbers
 bb = Align(azurins,{2 5 3 4 10 11 12})

Resorting alignment in the order of sequence input with the Align (ali_,
I_seqNumbers) function.
Load the following macro and apply it to your alignment. Example:

 macro reorderAlignmentSeq(ali_)
 nn=Name(ali_) # names in the alignment order
 ii=Iarray(Nof(nn))
 j=0
 for i=1,Nof(sequence) # the original order
 ipos = Index(nn, Name(sequence[i]))
 if ipos >0 then
 j=j+1
 ii[j] = ipos
 endif
 endfor
 ali_new = Align(ali_ ii)
 keep ali_new
 endmacro

Angle

a family of functions calculating planar angles. The most detailed is Angle (table) (see
below). They calculates planar angle in degrees.
Angle (as_atom) - returns the planar angle defined by the specified atom and two
previous atoms in the ICM-tree. For example, Angle(a_/5/c) is defined by C-Ca-N atoms
of the 5-th residue. You may type:

 print Angle(# and then click the atom of interest.

Angle (as_atom1 , as_atom2 , as_atom3) - returns the planar angle defined by three
atoms.
Angle (R_3point1 , R_3point2 , R_3point3) - returns the planar angle defined by the
three points.
Angle (R_vector1 , R_vector2) - returns the planar angle between the two vectors.

Angle (as table) - returns a table of all covalently bound atom triplets with their two
bond lengths and a planer angle. Example:

read pdb "1xbb"
t=Angle(a_H table)
sort t.angle
show t

Angle (as|rs|ms|os as_filter error) - returns a rarray of minimal angles within
each specific unit of the selection. The size of the array depends on the level of the
selection. Used to detect errors (too small angles).
Examples:

 d=Angle(a_/4/c) # d equals N-Ca-C angle
 print Angle(a_/4/ca a_/5/ca a_/6/ca) # virtual Ca-Ca-Ca planar angle

The rotation angle corresponding to a transformation vector is returned as r_out by the
Axis(R_12) function.

Area

calculates surface area. A quick guide:

Area(grob [error]) ⇒ r

Area(as | rs) ⇒ R_atomAreas|R_resAreas # needs surface calculation
beforehand

Area(rs type) ⇒ R_maxAreas_in_GLY_X_GLY

Angle 367

Area(as R_typeEyPerArea energy) ⇒ R_atomEnergies

Area(seq) ⇒ R_relAreasPerResidue

Area(s_icmResType) ⇒ r

Area(rs rs_2) ⇒ M_contactAreas

Area(rs rs_2 distance [min(4.) max(8.) [Ca_Cb_len(2.3)]]) ⇒
M_0_to_1_contact_strength

Note that if an atom selection is provided as an argument the surface area needs to be
computed beforehand with the show area or show energy "sf" command. The
detailed description can be found below:

Area (grob [error]) - returns real surface area of a solid graphics object.
Option error makes it return the fraction of the surface that is not closed to detect the
holes or missing patches in what supposed to be a closed surface. (e.g.

g = Grob("SPHERE",1.,2)
show Area(g)
if(Area(g error)>0.01) print "Surface not closed" # check for holes

See also: the Volume(grob) function, the split command and How to display
and characterize protein cavities section.
Area (as [[R_userSolvationDensities] [energy]]) - returns rarray of
pre-calculated solvent accessible areas or energies for selected atoms `as_ . This areas are
set by the show area surface|skin of show energy "sf" commands. Make
sure to clean up the areas with the set area a_//* 0. command before computing
the areas with show energy command since the command ignores hydrogens.

With option energy returns the product of the individual atomic accessibilities by the
atomic surface energy density. The values of the density depend on the
surfaceMethod preference and are stored in the icm.hdt file. The "contant
tension" value of the preference is a trivial case in which all areas are multiplied by
the surfaceTension parameter. For the "atomic solvation" and "apolar"
styles, the densities depend on atom types. Normally the atomic solvation densities are
taken from the icm.hdt file where the density values are listed for each hydration atom
type for "atomic solvation" and "apolar" styles. However, you can provide
your own array of n values R_userSolvationDensities with the number of elements less or
equal to the number of types to overwrite the first n types.

Examples:

read object s_icmhome+"crn.ob"
set area a_//* 0.
surfaceMethod = "apolar"
show energy "sf" # only heavy atoms
Area(a_/15:30/*) # areas of this atoms
#
Now let us redefine the first three solvation parameters
of icm.hdt and calculated E*A contributions of selected atoms
#
Area(a_/15:30/* {10., 20. 30.} energy)

Area (rs) - returns rarray of pre-calculated solvent accessible areas for selected
residues `rs_ . These accessibilities depend on conformation.
Area (rs type) - returns rarray of maximal standard solvent accessible areas for
selected residues `rs_ . These accessibilities are calculated for each residue in standard
extended conformation surrounded by Gly residues. Those accessibilities depend only on
the sequence of the selected residues and do NOT depend on its conformation. To
calculate normalized accessibilities, divide Area(rs_) by Area(rs_ type)
Example:

read object s_icmhome+"crn.ob"
show surface area
a=Area(a_/*) # absolute conformation dependent residue accessibilities

368 Area

b=Area(a_/* type) # maximal residue accessibilities in the extended conformation
c = a/b # relative (normalized) accessibilities

Area (resCode) ⇒ r_standard_area

- returns the real value of solvent accessible area for the specified residue type in the
standard "exposed" conformation surrounded by the Gly residues, e.g. Area("ala").
It is the same value as the Area(.. type) function.
Area(seq) ⇒ R_relAreasPerResidue

- returns an array of relative areas per residue stored with the sequence by the make
sequence command from molecules in which the areas had been computed
beforehand. Note that the sequence keeps only a very limited accuracy areas. Example:

read pdb "1crn"
show area surface
make sequence # 1crn_a now has relative areas
group table t Sarray(a_/* residue) Area(1crn_a) Area(a_/*)/Area(a_/* type)
show t

Important : "pre-calculated" above means that before invoking this function, you should
calculate the surface by show area surface , show area skin or show
energy "sf" commands.
Examples:

 build string "se ala his leu gly trp lys ala"
 show area surface # calculate surface area
 a = Area(a_//o*) # individual accessibilities of oxygens

 stdarea = Area("lys") # standard accessibility of lysine

More curious example
 read object s_icmhome+"crn.ob"
 show energy "sf" # calculate the surface energy contribution
 # (hence, the accessibilities are
 # also calculated)

 assign sstructure a_/* "_"
 # remove current secondary structure assignment
 # for tube representation
 display ribbon
 # calculate smoothed relative accessibilities
 # and color tube representation accordingly
 color ribbon a_/* Smooth(Area(a_/*)/Area(a_/* type) 5)
 # plot residue accessibility profile
 plot Count(1 Nof(a_/*)) Smooth(Area(a_/*)/Area(a_/* type) 5) display

See also: Acc() function.

Area contact matrix

(also see the simplified distance-based contacts strength calculation below)
Area (rs_1 rs_2) - returns rarray of areas of contact between selected residues.
You can do it for intra-molecular residue contacts, in which case both selections should
be the same, i.e. Area(a_1/* a_1/*) ; or, alternatively, you can analyze intermolecular
residue contacts, for example, Area(a_1/A a_2/A). See also the Cad function, and
example in plot area in which a contact matrix is calculated via interatomic Ca-Ca
distances. The table of the pairwise contact area differences is written to the s_out
string which can later be read into a proper table via: read column group
name="aa" input=s_out and sorted by the area (see below).
Example:

 read object s_icmhome+"crn.ob" # good old crambin
 s=String(Sequence(a_/A))
 PLOT.rainbowStyle="blue/rainbow/red"
 plot area Area(a_/A, a_/A) comment=s//s color={-50.,50.} \
 link transparent={0., 2.} ds

 read object s_icmhome+"complex"
 plot area Area(a_1/A, a_2/A) grid color={-50.,50.} \
 link transparent={0., 2.} ds

Area 369

Area(rs rs_2 distance [min(4.) max(8.) [Ca_Cb_len(2.3)]]) ⇒
M_0_to_1_contact_strength

- evaluates the strength of residue contact based on the projected and extended Ca-Cb
vector. It works with both converted and unconverted objects and needs ca, c, and n
atoms for its calculation only to be independent on the presense of Gly residues.

By default the procedure finds a point about 1.5 times beyond Cb along the Ca-Cb vector
(2.3A) and calculates the distance matrix between those point. Then the distances are
converted into the contact strength:

0. for distances larger than max_distance (default 8. A)◊
1. for distances smalle than min_distance (default 4. A)◊
(max- dist)/(max - min) for distances between max and min◊

All three parameters can be redefined, e.g.

read pdb "1crn"
m = Area(a_/A a_/A distance 4. 7. 2.5)

This matrix can also be used to evaluate the contact difference between contacts of two
proteins, e.g.

read pdb "1crn"
read pdb "1cbn"
make sequence a_*.A
aln=Align(1crn_a 1cbn_a)
m1=Area(a_1crn.a/!Cg a_1crn.a/!Cg distance) # !Cg excludes non-matching gapped regions
m2=Area(a_1cbn.a/!Cg a_1cbn.a/!Cg distance)
diff = Sum(Sum(Abs(m1-m2)))/Sum(Sum(Max(m1,m2)))
simi = 1.-diff
printf " Info> dist=%.2f similarity=%.2f or %1f%\n" diff simi,100.*simi

Asin

arcsine trigonometric function Returned values are in degrees.
Asin (real | integer)
- returns the real arcsine of its real or integer argument.
Asin (rarray)
- returns the rarray of arcsines of rarray elements.
Examples:

 print Asin(1.) # equal to 90 degrees
 print Asin(1) # the same

 print Asin({-1., 0., 1.}) # returns {-90., 0., 90.}

Asinh

inverse hyperbolic sine function.
Asinh (real)
- returns the real inverse hyperbolic sine of its real argument.
Asinh (rarray)
- returns the rarray of inverse hyperbolic sines of rarray elements.
Examples:

 print Asinh(1.) # returns 0.881374
 print Asinh(1) # the same

 print Asinh({-1., 0., 1.}) # returns {-0.881374, 0., 0.881374}

Ask

interactive input function. Convenient in macros.
Ask(s_prompt, i_default)
- returns entered integer or default.
Ask (s_prompt, r_default)

370 Asin

- returns entered real or default.
Ask (s_prompt, l_default)
- returns entered logical or default.
Ask (s_prompt, s_default [simple])
- returns entered string or default. Option simple suppressed interpretation of the
input and makes quotation marks unnecessary by automatically adding quotes around
your input text.
Examples:

 windowSize=Ask("Enter window size",windowSize)
 s_mask=Ask("Enter alignment mask","xxx----xxx")

 grobName=Ask("Enter grob name","xxx")
 display $grobName

 show Ask("Enter string, it will be interpreted by ICM:", "")
 #e.g. Consensus(myAlignm)

 show Ask("Enter string:", "As Is",simple)
 #your input taken directly as a string

See also: Askg

Askg

interactive input function that generates a GUI dialog. Return entered text Askg(
s_prompt, i_default) ⇒ s_returnsTheInputString

E.g.

Askg("Enter your name", "") # empty default
Askg("Enter your name", "Michael")

Return the pressed button. Askg(s_Question, "Reply1/Reply2/.." simple) ⇒
s_theReply

Makes a GUI dialog with the question and several alternatives separated by a slash. This
dialog returns one of the string selected ,e.g. "Yes", "No" , or "Cancel" for the
"Yes/No/Cancel" argument. Example:

s = Askg("Do you like bananas?","Yes/No/Fried only",simple)
if s=="Fried only" print "Impressive"

Creating a special chemical dialog for library enumeration.This one is very
specialized and is used in combi-chem generator.

Askg(chem_scaffold , enumerate) ⇒ s_makeLib_React_Args

Askg(chem_reaction , enumerate) ⇒ s_makeLib_React_Args

prompts for arguments for the enumerate library or make reaction
commands to create a combinatorial library. To use this function you need to have the
chemical array objects with Markush-scaffolds or reactions, plus the building blocks
loaded into ICM. The function returns a string with the agruments for the
enumerate library or make reaction commands. E.g.

args = Askg(scaff1 enumerate)
enumerate library scaff1 $args

Askg(s_dialogDeclaration) ⇒ "yes"/"no"

Generates a dialog from GUI dialog description text. Values from each input
field can be accessed either by :

$field_num

or

Ask 371

Getarg(i_field_num gui)

buf = "#dialog{\"Select InSilco Models\"}\n"
buf += "#1 l_Passive_GUT_Absorption (yes)\n"
buf += "#2 l_ToxCheck (no)\n"
buf += "#3 l_hERG_QSAR (yes)\n"
buf += "#4 s_Comment_Here ()\n"

Askg(buf)

print $1, $2, Getarg(3 gui), $4

Using Askg in shell, html-docs and table tool panels. These variants of the Askg
function can also be used as a part of an ICM script in dialogs generated from built-in
html documents, or in actions associated with tables.

See also : gui programming

Atan

arctangent trigonometric function Returned values are in degrees.
Atan (real | integer)
- returns the real arctangent of its real or integer argument.
Atan (rarray)
- returns the rarray of arctangents of rarray elements.
Examples:

 print Atan(1.) # equal to 45.
 print Atan(1) # the same.

 print Atan({-1., 0., 1.}) # returns {-45., 0., 45.}

Atan2

arctangent trigonometric function. Returned values are in degrees.
Atan2 (r_x, r_y)
- returns the real arctangent of r_y/r_x in the range -180. to 180. degrees using the
signs of both arguments to determine the quadrant of the returned value.
Atan2 (R_x R_y)
- returns the rarray of arctangents of R_y/R_x elements as described above.
Examples:

 print Atan2(1.,-1.) # equal to 135.
 print Atan2({-1., 0., 1.},{-0.3, 1., 0.3}) # returns phases {-106.7 0. 73.3}

Atanh

inverse hyperbolic tangent function.
Atanh (real)
- returns the real inverse hyperbolic tangent of its real argument.
Atanh (rarray)
- returns the rarray of inverse hyperbolic tangents of rarray elements.
Examples:

 print Atanh(0.) # returns 0.
 print Atanh(1.) # returns error

 print Atanh({-0.9999, 0., .9999}) # returns { -4.951719, 0., -4.951719 }

Atom

transforms the input selection to atomic level or returns an atom level selection. Function
is necessary since some of the commands/functions require a specific level of selection.

Atom(as|rs|ms|os) ⇒ as_atomLevelSel - a selection level transformation function

372 Askg

Atom(vs) ⇒ as_firstAtomMovedByVar - each variable be it a bond length, bond
angle, torsion angle or phase angle in the ICM tree has a single atom that is first moved
when this variable is changed. This function returns this first atom(s).

Atom(as_icmAtom i) # i-th preceding atom - this function also uses the concept
of the ICM tree and returns atoms i - th links before the selected one.

Atom(as1 [as_where] symmetry) - returns a selection of atoms that are topologically
equivalent to one atom defined by as1 . The optional second selection argument
as_where allows one to narrow down the search for the equivalent atoms to the specified
selection.

build smiles "C1CCCC1" # a cyclopentane
Atom(a_//c2 symmetry) # returns 4 other equivalent carbons, c1,c3,c4,c5
#
build string "AFA" # a tripeptide with phenylalanine
Atom(a_/3/ce1 a_/3 symmetry) # returns ce2 in phe

Atom(as tether) - returns a sub-selection of as that has tethers .

Atom(vs i) # i-th preceding atom for variables

Atom(label3d [i_item]) ⇒ as

Atom(pairDist_or_hbondPairDist) ⇒ as make distance or make bond
commands can be used to create distance lines and labels or hbonds, respectively, in the
format of a "distance" object; The Atom function then will return the atoms referenced in
the object. E.g. display Atom(hbondpairs) xstick cpk
Examples:

 asel=Acc(a_2/his) # select accessible His residues of
 # the second molecule
 show Atom(asel) # show atoms of these residues
 show Atom(v_//phi) # carbonyl Cs

See also: the Res, Mol, and Obj functions.

Augment

creates augmented affine 4x4 space transformation matrix or adds 4th column to the
coordinate matrix.
Augment(R_12transformationVector)
- rearranges the transformation vector into an augmented affine 4x4 space transformation
matrix .
The augmented matrix can be presented as

 a1 a2 a3 | a4
 a5 a6 a7 | a8
 a9 a10 a11 | a12
 ------------+----
 0. 0. 0. | 1.

where {a1,a2,...a12} is the R_12transformationVector . This matrix is convenient to use
because it combines rotation and translation. To find the inverse transformation simply
inverse the matrix:

 M_inv = Power(Augment(R_12direct),-1))
 R_12inv = Vector(M_inv)

To convert a 4x4 matrix back to a 12-transformation vector, use the Vector(M_4x4)
function.

See also: Vector (the inverse function), symmetry transformations, and
transformation vector.
Augment (R_6Cell)
- returns 4x4 matrix of oblique transformation from fractional coordinates to absolute
coordinates for given cell parameters {a b c alpha beta gamma}.
This matrix can be used to generate real coordinates. It also contains vectors A, B and C.
See also an example.

Atom 373

Example:

 read object s_icmhome+"crn.ob"
 display a_crn. # load and display crambin: P21 group
 obl = Augment(Cell()) # extract oblique matrix
 A = obl[1:3,1] # vectors A, B, C
 B = obl[1:3,2]
 C = obl[1:3,3]
 g1=Grob("cell",Cell()) # first cell
 g2=g1+ (-A) # second cell
 display g1 g2

Augment(R_3Vector) - appends 1. to a 3D vector x,y,z (resulting in x,y,z,1.) to allow
direct arithmetics with augmented 4x4 space transformation matrices.
Augment(M_XYZblock) - adds 1.,1.,..1. column to the Nx3 matrix of with x,y,z
coordinates to allow direct arithmetics with augmented 4x4 space transformation
matrices.

Augment(M_3x3_rotation R_3trans) - adds 0.,0.,0.,1. row the 3x3 rotation
matrix . Then it adds the translation vector as the first three elements of the 4th column.

Axis

calculates rotation/screw axis corresponding to a transformation
Axis({ M_33Rot | R_12transformation })
- returns rarray with x,y,z components of the normalized rotation/screw axis vector.
Additional information calculated and returned by the function:

r_out rotation angle (in degrees);◊
r_2out helix rise;◊
R_out 3-rarray with a middle point on the axis.◊

See also: How to find and display rotation/screw
transformation axis

Blob

Blob(s_text ['hex'|'base64'])

Creates blob from string. Hex or Base64 conversion is applied if specified.

Blob(any_variable binary)

Serialize any shell variable into blob

Blob(blob_serialized read)

Un-serialize blob into shell variable.

Example:

read pdb "1crn"
convert auto
make map potential
c = Collection()
c["ob"] = a_ # store object
c["map"] = m_atoms # store map
s_base64 = String(Blob(c binary) 'base64') # serialize collection into base64 string.
 # now it can be passed between CGI scripts

delete a_*.
delete m_atoms c
c = Blob(Blob(s_base64 'base64') read) # convert s_base64 to blob and un-serialize it
load object c["ob"]
m_atoms = c["map"]
display a_
display m_atoms

374 Augment

Bfactor

crystallographic temperature factors or custom atom parameters.
Bfactor ([as | rs] [simple]) - returns rarray of b-factors for the specified
selection of atoms or residues. If selection of residue level is given, the average
residue b-factors are returned. B-factors can also be shown with the command show
pdb.
Option simple returns a normalized b-factor. This option is possible for X-ray objects
containing b-factor information. The read pdb command calculates the average
B-factor for all non-water atoms. The normalized B-factor is calculated as (b-b_av)/b_av
. This is preferable for coloring ribbons by B-factor since these numbers only depend on
the ratios to the average. We recommend to use the following commands to color by
b-factor:

 color ribbon a_/ Trim(Bfactor(a_/ simple),-0.5,3.)//-0.5//3. # or
 color a_// Trim(Bfactor(a_// simple),-0.5,3.)//-0.5//3. # for atoms

This scheme will give you a full sense of how bad a particular part of the structure is.
See also: set bfactor.
Examples:

 read pdb "1crn"
 avB=Min(Bfactor(a_//ca)) # minimal B-factor of Ca-atoms
 show Bfactor(a_//!h*) # array of B-factors of heavy atoms
 color a_//* Bfactor(a_//*) # color previously displayed atoms
 # according to their B-factor
 color ribbon a_/A Bfactor(a_/A) # color the whole residue by mean B-fac.

Boltzmann

returns the real Boltzmann constant = 0.001987 kcal/deg.
Example:

 deltaE = Boltzmann*temperature # energy

Box

the 3D graphics box function. This box can be displayed with the display box
command or by left-double-clicking on a grob, and interactively moved and resized
with the mouse. One can select atoms inside a box by this operation: as_ & Box()
Box ([display]) - returns the 6- rarray with {Xmin ,Ymin ,Zmin ,Xmax ,Ymax ,Zmax }

parameters of the graphics box as defined on the screen. With the display keyword,
the function returns {0. 0. 0. 0. 0. 0.} if the box is not displayed (by default it returns the
last 6 values).
Box (center) - returns the 6- rarray with
Xcenter,Ycenter,Zcenter,Xsize,Ysize,Zsize parameters of the graphics box as defined on
the screen.
Box (as [r_margin]) - returns the 6- rarray with
Xmin,Ymin,Zmin,Xmax,Ymax,Zmax parameters of the box surrounding the selected
atoms. The boundaries are expanded by r_margin (default: 0.0).

Examples:

 build string "se ala his" # a peptide
 display box Box(a_/2 1.2) # surround the a_/2 by a box with 1.2A margin
 color a_//* & Box()

Box ({ g | m | R_6box } [r_margin])
- returns the 6- rarray with Xmin,Ymin,Zmin,Xmax,Ymax,Zmax parameters of the box
surrounding the selected grob or map. The boundaries are expanded by r_margin
(default: 0.0).

Blob 375

Bracket

bracket the grid potential map by value or by space.
Bracket (m_grid [r_vmin r_vmax])
- returns the truncated map . The map will be truncated by value. The values beyond
r_vmin and r_vmax will be set to r_vmin and r_vmax respectively.
Bracket (m_grid [R_6box])
- returns the modified map . All the values beyond the specified box will be set to zero.
Example:

 make map potential "gh,gc,gb,ge,gs" a_1 Box()
 m_ge = Bracket(m_ge, Box(a_1/15:18,33:47)) # redefine m_ge

See also: Rmsd(map) and Mean(map), Min(map), Max(map) functions.

Cad

Contact Area Difference function to measure geometrical difference between two
different conformations of the same molecule. Cad, as opposed to Rmsd, is contact based
and can measure the difference in a wide range of model accuracies. Roughly speaking it
measures the surface weighted fraction of native contacts. Can be used to evaluate the
differences between several NMR models, the accuracy of models by homology and the
accuracy of docking solutions.
Cad can measure the geometrical difference between two conformations in several
different ways:

between two conformations of the same protein based on full atom
residue-residue contact area calculation, Cad(..)

◊

between two conformations of the same protein based on Cbeta-Cbeta distance
evaluation (`Cad1{Cad}(.. distance) .ICM uses an empirically derived
ContactStrength(Cb-distance) function.

◊

between two homologous structures based preservation of the residue contacts
through the alignment (Cad (.. alignment)) . The contact strength in this
case is also derived from the inter-residue distances.

◊

Comparing two conformations of the same molecule via
residue-residue contact conservation.

Cad (rs_A1 [rs_A2] rs_B1 [rs_B2] [distance | alignment])
- returns the real contact area difference measure (described in Abagyan and
Totrov, 1997) between two conformations A and B of the same set of residue pairs
from two different objects. The set of residue pairs in each object (A or B) can be defined
in two ways:

376 Bracket

by a single selection rs_A1 : all pairs between selected residues (is equivalent to
rs_A1 rs_A1)

◊

by two residue selections rs_A1 rs_A2: cross pairs between two sets of selected
residues (e.g. the contacts between two subunits)

◊

The measure is a normalized sum of differences between residue-residue contact areas in
two conformations. The measure was calibrated on a set of pairs of conformations. The
average distortion due to a noncrystallographic symmetry is about 5%, the average CAD
between a pair of models in an NMR entry is 15%. Note that the paper uses an additional
factor of 1.8 (i.e. CAD=1.8*Cad()) to bring the scale down to 0:100%, because about
40% of the contacts are trivial contacts between the neighboring residues. However, in
evaluation of the docking solutions coefficient 1.8 should not be used. Loops are
somewhat intermediate, but still a coefficient of 1.8 is recommended for consistency.
The whole matrix of contact area differences is returned in M_out . This matrix can be
nicely plotted with the plot area M_out number .. command (see example).
The full matrix can also be used to calculate the residue profile of the differences.

See also: Area() function which calculates absolute residue-residue contact areas.
Options:

distance option allows one to compare approximations of the inter-residue
contact areas by the Ca and Cbeta positions. This allows one to calculated
deformations between two homologous proteins which is not possible in the
default mode in which two chemically identical molecules are compared. The
residue pairs in two homologs are equivalenced according to the alignments
linked to the molecules. Residues deleted in a homologue are considered to
have zero contact.

◊

alignment option is described in Marsden, Abagyan, 2004, Bioinformatics,
v20, 2333-2344.

◊

Examples:

Ab initio structure prediction, Overall models by homology
 read pdb "cnf1" # one conformation of a protein
 read pdb "cnf2" # another conformation of the same protein
 show 1.8*Cad(a_1. a_2.) # CAD=0. - identical; =100. different
 show 1.8*Cad(a_1.1 a_2.1) # CAD between the 1st molecules (domains)
 show 1.8*Cad(a_1.1/2:10 a_2.1/2:10) # CAD in a window
 PLOT.rainbowStyle = 2
 plot area grid M_out comment=String(Sequence(a_1,2.1)) link display

Loop prediction: 0% - identical; ~100% totally different
CAD for loop 10:20 and its interactions with the environment
 show 1.8*Cad(a_1.1/10:20 a_1.1/* a_2.1/10:20 a_2.1/*)
CAD for loop 10:20 itself
 show 1.8*Cad(a_1.1/10:20 a_1.1/10:20 a_2.1/10:20 a_2.1/10:20)

Evaluation of docking solutions: 0% - identical; 100% totally different
 read pdb "expr" # one conformation of a complex
 read pdb "pred" # another conformation of the same complex
 show Cad(a_1.1 a_1.2 a_2.1 a_2.2) # CAD between two docking solutions

ANOTHER EXAMPLE: the most changed contacts
 read object "crn"
 copy a_ "crn2"
 randomize v_ 5.
 Cad(a_1. a_2.)
 show s_out
 read column group input= s_out name="cont"
 sort cont.1
 show cont
the table looks like this (the diffs can be both + and -):
#>T cont
#>-1-----------2-----------3----------
 -39. a_crn.m/38 a_crn.m/1
 -36.4 a_crn.m/46 a_crn.m/4
 -32.1 a_crn.m/46 a_crn.m/5
 -29.8 a_crn.m/30 a_crn.m/9
 -25.2 a_crn.m/37 a_crn.m/1
...
 42.5 a_crn.m/43 a_crn.m/5
 45.1 a_crn.m/44 a_crn.m/6
 45.2 a_crn.m/43 a_crn.m/6
 55.3 a_crn.m/46 a_crn.m/7
 56. a_crn.m/45 a_crn.m/7

Cad 377

Comparing two different, but structurally homologs
proteins, via residue-residue contact conservation.

Cad (rs_A1 [rs_A2] rs_B1 [rs_B2] alignment)

Ceil

rounding function.
Ceil (r_real [r_base])
- returns the smallest real multiple of r_base exceeding r_real.
Ceil (R_real [r_base])
- returns the rarray of the smallest multiples of r_base exceeding components of the
input array R_real. Default r_base= 1.0 .
See also: Floor().

Cell

crystallographic cell function.
Cell ({ os | m_map })
- returns the rarray with 6 cell parameters {a,b,c,alpha,beta,gamma} which were
assigned to the object or the map.

Charge

returns an rarray of partial electric charges of selected atoms, or total charges for residue,
molecule or objects, depending on the selection level.
Charges can also be shown with a regular show as_select command.
Charge ({ os | ms | rs | as } [formal | mmff])
- returns rarray of elementary or total charges depending on the selection level.

formal : return formal charges◊
mmff : return formal charges calculated according to mmff atom types and rules.
Note: do not confuse this option with a function to return the mmff charges.

◊

Examples:

 build string "ala his glu lys arg asp"
 show Charge(a_1) # charge per molecule
 show Charge(a_1/*) # charge per residue
 show Charge(a_1//*) # charge per atom

 avC=Charge(a_/5) # total electric charge of 15th residue
 avC=Sum(Charge(a_/5/*)) # another way to calculate it
 show Charge(a_//o*) # array of oxygen charges

to return mmff charges:
 set type mmff
 set charge mmff
 Charge(a_//*)

to return total charges per molecular object:
 read mol s_icmhome+"ex_mol.mol"
 set type mmff
 set charge mmff
 Charge(a_*.)

See also: set charge.

Chemical function. Converting and Generating
library compounds.

Converting 3D objects to chemical arrays.

Chemical(ms|os [exact] [hydrogen] [unique] [pharmacophore])

378 Cad

returns an array of chemicals from a molecular selection of 3D molecular objects, e.g.
a_H for hetero-molecules By default the selected molecules will be converted to 2D
graphs. However with the exact option the original 3D coordinates will be retained in
the elements of the chemical array. If you want to preserve explicitly drawn hydrogens
hydrogen option should be used. Note that the number of chemicals in the array will be
determined by the selection level. At the object level multiple molecules of the same
object will be merged into one array element. With unique option duplicates will be
excluded from the result.

Example:

read pdb "1ch8"
group table t_2D Chemical(a_H) # convert to 2D chemical table
group table t_3D Chemical(a_H exact) # make 3D chemical table without hydrogens
group table t_3D_hyd Chemical(a_H exact hydrogen) # make 3D chemical table, keep hydrogens

With pharmacophore option the function generates pharmacophore points for the
input selection.

Example:

read object s_icmhome + "biotin.ob" name="biotin"
read mol input = String(Chemical(a_ pharmacophore)) name="biotin_ph4"
display xstick
display wire a_biotin.

To display supported pharmacophore types and use show pharmacophore type
command

Converting smiles to chemical arrays:

Chemical(S_smiles|s_smiles)

returns an array of chemicals from a string arrays of smiles.

Example:

add column t Chemical({"N[C@@](F)(C)C(=O)O", "C[C@H]1CCCCO1"})

Converting InChI to chemical arrays:

Chemical(S_InChI|s_InChI)

See also: chemical functions

Generating combinatorial compounds from a Markush structure and R-group
arrays.

Chemical(scaffold I_RgroupNumArray enumerate) ⇒ returns one chemical

The I_RgroupNumArray is an array of as many elements as there are different R groups
in the scaffold.E.g. if there is R1 R2 R3 than this parameter can be {10,21,8}. The
numbers refer to the R-group arrays linked to the scaffold.E.g.

group table scfld Chemical("C(=CC(=C(C1)[R2])[R1])C=1") "mol"
link group scfld.mol 1 Chemical({"N","O","S"})
link group scfld.mol 2 Chemical({"[Cl]", "[C*](=O)O"})

Nof(scfld.mol library) # returns the total number of molecules in that combinatorial library
Nof(scfld.mol group) # returns an array of sizes of each linked array in R1 R2.. order.

Chemical(scfld.mol {1 1} enumerate)
Chemical(scfld.mol {1 2} enumerate)
Chemical(scfld.mol {2 2} enumerate)

Chemical(enumerate scaffold [simple] R1 R2 ...) ⇒ returns enumeration
result

The same as above but does not require explicit linkage with link group command.

Example:

Chemical function. Converting and Generatinglibrary compounds. 379

Chemical(enumerate Chemical("C(=CC(=C(C1)[R2])[R1])C=1") Chemical({"N","O","S"}) Chemical({"[Cl]", "[C*](=O)O"}))

simple mode is similar to enumerate library and requires that size of R-group
arrays be the same.

Example:

Chemical(enumerate Chemical("C(=CC(=C(C1)[R2])[R1])C=1") simple Chemical({"N","O"}) Chemical({"[Cl]", "[C*](=O)O"}))

See also: linking scaffold to R-group arrays and the Nof

Cluster

Cluster(I_NxM_NearestNeighb i_M_totalNofNearNeighbors
i_minNofCommonNeighbors) ⇒ I_N_clusterNumbers
function returns iarray of cluster numbers for each or N points.
The input to the first function is an array of M nearest neighbors (defined by the second
argument i_M_totalNofNearNeighbors) for each of N points. For example for an array
for 5 points, and i_M_totalNofNearNeighbors = 3 it can be an array like this: {3,4,5,
1,3,4 1,2,5 2,3,5 1,2,3} . The points will be grouped into the same cluster if
the number of neighbors they share is larger or equal than i_minNofCommonNeighbors .
This clustering algorithm is adaptive to the cluster density and does not depend on
absolute distance threshold. In other words it will identify both very sparse clusters and
very dense ones. The nearest neighbor array can be calculated by the with the Link(
I_bitkeys , nBits, nNearestNeighbors) function.
Cluster(M_NxNdist r_maxDist) ⇒ I_N_clusterNumbers
This function identifies the i_totalNofNeighbors nearest neighbors from the full distance
matrix M_NxNdist for each point and assembles points sharing the specified number of
common neighbors in clusters.
All singlets (a single item not in any cluster) are placed in a special cluster number 0 .
Other items are assigned to a cluster starting from 1.
Example with a distance matrix:

let us make a distance matrix D
we will cook it from 5 vectors {0. 0. 0.}
 m=Matrix(5,3) # initialize 5 vectors
 m[2,1:3]={1. 0. 0.} # v2
 m[3,1:3]={1. 1. 0.} # v3
 m[4,1:3]={1. 1. 1.} # v4
 m[5,1:3]={1. 0.1 0.1} # v5 close to v2

 D = Distance(m) # 5x5 distance matrix created

 Cluster(D , 0.2) # v2 and v5 are assigned to cluster 1
 Cluster(D , 0.1) # radius too small. All items are singlets
 Cluster(D , 2.) # radius too large. All items are in cluster 1

Collection

The function to create a collection object

Collection() - returns empty collection object

Collection(s_json_string) - returns a collection object from a text in JSON
format

Collection(s_url_encoded_string) - returns a collection object from a URL
encoded string ("a=1&b=abc")

Collection(web) - returns a collection object from the POST or GET
arguments. Can be used in CGI scripts. Multi-part content is also supported.

Collection(table_row) - returns a collection object for the table row.
Collection(t[1])

380 Cluster

Collection(table {column|header}) - converts table columns or header part to
the collection

Collection(table|tab_column format) - returns a collection object with the
members controlling format, color and function for calculated columns. This collection
can be modified and set back to the table or table column with the set format
collection command . Example:

add column t {1 2 3} {1 2 3}
add column t function= "A+B"
set format t.A "<i>%1</i>"
show format t
c = Collection(t.A format) # modify c
set format t.B c

Color

returns RGB values or color names.

Color (as_n ball|cpk|label|skin|surface|wire) ⇒ M_nx3_rgb - returns an rgb
matrix of colors for a particular representation (0. 0. 0. 0. means black or undisplayed)
Color (g_grob) ⇒ M_nx3_rgb - returns matrix of RGB numbers for each vertex of
the g_grob (dimensions: Nof (g_grob),3).
See also: color grob matrix .
Example:

 build string "se his"
 display xstick
 make grob image name="g_"
 display g_ only smooth
 M_clr = Color(g_)
 for i=1,20 # shineStyle = "color" makes it disappear completely
 color g_ (1.-i/20.)*M_clr
 endfor
 color g_ M_clr

Color(M_rgb) ⇒ S_colorNames

- returns sarray of color names approximating the rgb values in the matrix. The color
names and definitions are taken from the icm.clr file. Example:

m = Matrix(3)
Color(m) # returns {"red","blue1","green"}

Color(system)

- returns sarray of system color names.

Color(system i_numColor)

- returns a name of a system color by number.

Example:

N = Nof(Color(system))
for i=1,10
 print Color(system Random(N)) # randomly pick one color
endfor

Color(background)
- returns rarray of three RGB components of the background color.

Interpolating colors by gradient

Color(r_value s_gradient [r_from r_to]) ⇒ R_3rgb - returns 3-element rarray with
RGB components describing the color and useful for the color .. rgb= command.

Color 381

Color(R_N_values s_gradient [r_from r_to]) - returns matrix with N rows and 3
columns where each row is the RGB representation of the interpolated color for the
respective value in the R_N_values array.

Examples:

s = "red/lime/blue"
Color(0. s 0. 1.)
Color(0.5 s 0. 1.)
Color(1.0 s 0. 1.)
Color(0.1 s 0. 1.)
Color(0.8 s 0. 1.)
Color({0.1 0.8} s 0. 1.)
Color({1. 8.} s 0. 10.)

Color(0.1 "red/lime/blue,0:1")
Color({0.1 0.8} "red/lime/blue,0:1")
Color({1. 8.} "red/lime/blue,0:10")

Image color functions

Color(imageArray background)

returns sarray with background colors of the images in imageArray_.The color of the
top left pixel of the image is returned as the background color currently.

See also: Image, image parray

Consensus

Consensus (ali) ⇒ s_consensus
- returns the string consensus of alignment ali_. The consensus characters are
these: # hydrophobic; + RK; - DE; ^ ASGS; % FYW; ~ polar. In the selections by
consensus a letter code (h,o,n,s,p,a) is used.
Consensus (ali { i_seq | seq })
- returns the string consensus of alignment ali_ as projected to the sequence.
Sequence can be specified by its order number in the alignment or by name.
Example displaying conserved residues:

 read alignment "sx" # load alignment
 read pdb "x" # structure
 display ribbon
 # multiply rs_ by a mask like " A C N .."
 cnrv = a_/A & Replace(Consensus(sx cd59),"[.^~#]"," ")
 display cnrv red
 display residue label cnrv

Consensus (ms|rs)

surface accessible areas projected on the selected residues via linked sequence and
alignment.

Contour

making a table with the contour lines of a 2D function represented by a matrix for display
in the plot command.

Contour(M [r_step|i_numContours [fmin,fmax]] [R_Xs|R_Ys]) ⇒ T_contourData
(X,Y,conn,Z)

Example (UNFINISHED):

M = 10.*Smooth(Smooth(Smooth(Matrix(100))))
tt = Contour(M,10,0.,5.)
delete tt.Z == 0.
sort tt.Z
add column tt "_black line 0.5" name="mark"

382 Color

plot tt.X tt.Y tt.mark "/tmp/tmp.eps" append

Corr

linear correlation function (Pearson's coefficient R)
Corr (R_X, R_Y) ⇒ r_correlation
- returns the real value of the linear correlation coefficient. Probability of the null
hypothesis of zero correlation is stored in r_out .

Note: this function returns R , not R2 . Taking it to the 2nd power can be a humbling
experience.
Examples:

 r=Corr(a,b) # two vectors a and b
 if (Abs(r_out) < 0.3) print "it is actually as good as no correlation"

See also: LinearFit() function.

Cos

cosine function. Arguments are assumed to be in degrees.
Cos ({ r_Angle | i_Angle })
- returns the real value of cosine of its real or integer argument.
Cos (rarray)
- returns rarray of cosines of each component of the array.
Examples:

 show Cos(60.) # returns 0.5
 show Cos(60) # the same

 rho={3.2 1.4 2.3} # structure factors
 phi={60. 30. 180.} # phases
 show rho phi rho*Cos(phi) rho*Sin(phi) # show in columns rho, phi,
 # Re, Im

Cosh

hyperbolic cosine function.
Cosh ({ r_Angle | i_Angle }) - returns the real value of hyperbolic cosine of its real
or integer argument. Cos(x)=0.5(eiz + e-iz)
Cosh (rarray) - returns rarray of hyperbolic cosines of each component of the array.
Examples:

 show Cosh(1.) # 1.543081
 show Cosh(1) # the same

 show Cosh({-1., 0., 1.}) # returns {1.543081, 1., 1.543081}

Count

function creates an iarray. Summary:
Count(i_n) ⇒ I_1,2,3,..n◊
Count(i_from i_to [i_step=1]) ⇒ I_from,...,to◊
Count(I|R|S_array) ⇒ I_1,..,n◊
Count(I|R|S unique|identity|number) ⇒ I # 111222233 or
123123412 or 333444422

◊

Detailed descriptions:
Count ([i_Min,] i_Max) - returns iarray of numbers growing from i_Min
to i_Max. The default value of i_Min is 1.
Examples:

 show Count(-2,1) # returns {-2,-1,0,1}
 show Count(4) # returns {1,2,3,4}

Contour 383

See also the Iarray().
Count (array)
- returns iarray of numbers growing from 1 to the number of elements in the
array.

Count (I|R|S_array unique | identity) ⇒ I

returns an integer array with integer id for sequentially identical values.
Example:

group table t {"d","d","d","bb","bb","a","a","a"}
add column t Count(t.A unique) Count(t.A identity) name={ "unique","identity" }
show t
 #>T t
 #>-A-----------unique------identity---
 d 1 1
 d 1 2
 d 1 3
 bb 2 1
 bb 2 2
 a 3 1
 a 3 2
 a 3 3

CubicRoot

CubicRoot(r) ⇒ r_cubic_root

CubicRoot(r [r_im]) ⇒ R6_3re+3im

Example:

CubicRoot(27.)
 3.
CubicRoot(27. 0.)
 #>R
 3.
 -1.5
 -1.5
 0.
 -2.598076
 2.598076

See also: SolveCubic, Sqrt

Date

Summary:

Date() ⇒ e_1currentDate

Date(n) ⇒ e_arrayOf_n_currentDates

returns an date array of current system date and time.

Example:

print "Today is :" Date()

Date (version) ⇒ e_dateOfCompilation

Date (os) ⇒ e_pdbDates

returns the date of the pdb file creation in an date array format. The date
read from the HEADER record of a pdb file and is stored with the object.

Example:

384 Count

read pdb "1crn"
if Date(a_) > Date("1980","%Y") print "released after 1980"

Date ({s_date|S_dates} [s_format])

converts string or sarray to dates using s_format or default
TOOLS.dateFormat

Example:

String(Date("12 Oct 2002", "%d %b %Y") "%Y-%m-%d")

The allowed format specifications are the following:

format description
%a or
%A

The weekday name according to the current locale, in abbreviated
form or the full name.

%b or
%B or
%h

The month name according to the current locale, in abbreviated form
or the full name.

%c The date and time representation for the current locale.
%C The century number (0-99).
%d or %e The day of month (1-31).

%D
Equivalent to %m/%d/%y. (This is the American style date, very
confusing to non-Americans, especially since %d/%m/%y is widely
used in Europe.)

%H The hour (0-23).
%I The hour on a 12-hour clock (1-12).
%j The day number in the year (1-366).
%m The month number (1-12).
%M The minute (0-59).
%n Arbitrary whitespace.
%p The localeâ→�s equivalent of AM or PM. (Note: there may be none.)

%r The 12-hour clock time (using the localeâ→�s AM or PM).
(%I:%M:%S %p)

%R Equivalent to %H:%M.

%S The second (0-60; 60 may occur for leap seconds; earlier also 61 was
allowed).

%t Arbitrary whitespace.
%T Equivalent to %H:%M:%S.

%U The week number with Sunday the first day of the week (0-53). The
first Sunday of January is the first day of week 1.

%w The weekday number (0-6) with Sunday = 0.

%W The week number with Monday the first day of the week (0-53). The
first Monday of January is the first day of week 1.

%x The date, using the localeâ→�s date format.
%X The time, using the localeâ→�s time format.

%y
The year within century (0-99). When a century is not otherwise
specified, values in the range 69-99 refer to years in the twentieth
century (1969-1999); values in the range 00-68 refer to years in the
twenty-first century (2000-2068).

%Y The year, including century (for example, 1991).
Example:

String(Date() "%b %d %Y %I:%M%p") # Current date and time in American style
String(Date() "%d/%b/%Y %H:%M") # European style

Deletion

Deletion (rs_Fragment, ali_Alignment [, seq_fromAli] [, i_addFlanks]
[{"all"|"nter"|"cter"|"loop"}])
- returns the residue selection which flanks deletion points from the

Date 385

viewpoint of other sequences in the ali_Alignment. If argument seq_fromAli is
given (it must be the name of a sequence from the alignment), all the other
sequences in the alignment will be ignored and only the pairwise sub-alignment
of rs_Fragment and seq_fromAli will be considered. The alignment must be
linked to the object. With this function (see also Insertion function) one
can easily and quickly visualize and/or extract all indels in the three-dimensional
structure. The default i_addFlanks parameter is 1. String options:

"all" (default: no string option) select deletions of all types⋅
"nter" select only N-terminal fragments⋅
"cter" select only C-terminal fragments⋅
"loop" select only the internal zones of deleted loops⋅

See example coming with the Insertion() function description.

Descriptor

Descriptor (chemArray predModel)

- returns vector of rarrays with chemical descriptors calculated for each
chemical. each rarray consists of chemical fingerprint part and values for
columns with formula used in the predModel.

This information can be used for further analysis or exported outside ICM.

Example:

 # assumes that 'clogPpred' is a prediction model
 tt = Table(Transpose(Matrix(Descriptor(Chemical("CCC"), clogPpred))))
 add column tt Name(clogPpred column)
 sort reverse tt.A

To find the description of the each particular position in the rarray Name
function can be used.

Example:

rr = Descriptor(Chemical("CCC") myModel)[1]
na = Name(myModel column)
for i=1,Nof(rr)
 if (rr[i] != 0) print rr[i], na[i]
endfor

See also: Name(predModel, column .

Det

determinant function.
Det (matrix)
- returns a real determinant of specified square matrix.
Examples:

 a=Rot({0. 0. 1.}, 30.) # Z-rotation matrix by 30 degrees
 print Det(a) # naturally, it is equal to 1.

Disgeo

Solves the so called "DIStance GEOmetry" problem (finding coordinates
from a distance set). This function can be used to visualize in two or three
dimensions a distribution of homologous sequences:

 group sequence se1 se2 se2 se4 mySeqs
 align mySeqs
 distMatr=Distances(mySeqs)

or any objects between which one can somehow define pairwise distances. Since

386 Deletion

principal coordinates are sorted according to their contribution to the distances
and we can hardly visualize distributions in more than three dimensions, the first
two or three coordinates give the best representation of how the points are
spread in n-1 dimensions. Another application is restoring atomic coordinates
from pairwise distances taken from NMR experiments.
Disgeo (matrix)
- returns matrix [1:n,1:n] where the each row consists of n-1 coordinates of
point [i] sorted according to the eigenvalue (hence, their importance). The first
two columns, therefore, contain the two most significant coordinates (say X and
Y) for each of n points. The last number in each row is the eigenvalue [i]. If
distances are Euclidean, all the eigenvalues are positive or equal to zero. The
eigenvalue represents the "principal coordinate" or "dimension" and the actual
value is a fraction of data variation due to the this particular dimension.
Negative eigenvalues represent "non-Euclidean error" in the initial distances.

R_out returns four numbers: total negative eigen values, and the first
3 largest positive eigenvalues. All scaled to 100%.

⋅

Example:

 read sequences s_icmhome+"zincFing" # read sequences from the file,
 list sequences # see them, then ...
 group sequence alZnFing # group them, then ...
 align alZnFing # align them, then ...
 a=Distance(alZnFing) # a matrix of pairwise distances
 n=Nof(a) # number of points
 b=Disgeo(a) # calculate principal components
 corMat=b[1:n,1:n-1] # coordinate matrix [n,n-1] of n points
 eigenV=b[1:n,n] # vector with n sorted eigenvalues
 xplot= corMat[1:n,1]
 yplot= corMat[1:n,2]
 plot xplot yplot CIRCLE display # call plot a 2D distribution

Distance

generic distance function. Calculates distances between two ICM-shell objects,
bit-strings or molecular objects, or extracts distances from complex ICM-shell
objects.

Distance(II | RR | as as | seq seq) ⇒ r_dist

Distance(S|s, s) ⇒ R|r

Distance(ali ali [exact]) ⇒ r

Distance(S S [simple]) ⇒ M

Distance(Mnk) ⇒ Mnn

Distance(Mnk Mmk) ⇒ Mnm

Distance(M_xyz|as M_xyz|as r_dist) ⇒ l_yes_if_closer_than_dist

Distance(seq seq
[identity|evolution|new|fast|number|reverse])

Distance(seq seq nucleotide [len])

Distance(seqArr[n]>) ⇒ <M_nn

Distance(ali seq [string]) ⇒ R_n_seq_in_ali

Distance(seqArr[n]> <seq) ⇒ R_n

Distance(seqArr[n]> <seqArr[m]>) ⇒ <M_nm

Distance(bitvecArr[n]> <bitvecArr[m]>) ⇒ <M_nm #tanimoto

Disgeo 387

Distance(as [r_default=-1.]) ⇒ R_tether_lengths_or_def

Distance(as_n as_m) ⇒ d_between_centers_of_mass

Distance(as_n as_m all) ⇒ R_nm

Distance(as_n as_n rarray) ⇒ R_n # aligned arrays, same n

Distance(ali [0]) ⇒ M_interSeqDist

Distance(X_n [X_m] [pharmacophore]) ⇒
M_nxm_chemical_Tanimoto_distances

Distance(I_keys1 I_keys2 i_nBits|R_nbitWeights [simple]) ⇒ M :
Tanimoto|weighted

Distance(tree [i_at=1] split) ⇒ r_splitLevel

Distance(tree all|modify) ⇒ R_splitLevels|splitLevelTStats

Distance(g wire|grid [i_maxDist(1000000)>]) ⇒ <M_shortestPaths

See detailed descriptions below.

Distance between iarrays

Distance (iarray1, iarray2)
- returns the real sqrt of sum of (I1i -I2i)2 .
Distance between vectors

Distance (R_X, R_Y) - returns the real Cartesian distance between two
vectors of the same length. D = Sum((Xi - Yi)2)
Distance ~~as_

Distance (as_1, as_2 [all])

- returns the real distance in Angstroms between centers of mass of the two
specified selections. The interactive usage of this function: Option all will
return an array of all cross distances between the selections. The selected virtual
atoms will be skipped if the selection level residue, molecule or object.
Othewise, if you explicitly select virtual atoms, they will be included, e.g.

 build string "ala" # contains 2 virtual atoms at N terminus
 build string "his" # also contains 2 virtual atoms at N terminus
 Distance(a_1. a_2. all) # no virtual atom distances
 Distance(a_1.// a_2.// all) # selected virtual atoms are included

 Distance(a_1. a_2.) # a single distance between centers of mass

Distance ~~as_ rarray

Distance (as_1 , as_2, rarray)

- returns the rarray of distances in Angstroms between the two specified
selections containing the same number of atoms (1-1, 2-2, 3-3, ...).

See also: Distance (as1 as2 all)

Distance matrix

Distance (M_coor) - returns the square matrix of distances between the
rows of the input matrix M_coor. Each row contains m coordinates (3 in 3D
space). For example: Distance(Xyz(a_//ca)) returns a square matrix of
Ca-Ca distances.

388 Distance

Tanimoto distance between two arrays of bit-strings

Distance(X_chem_n X_chem_m) ⇒ M_nxm_distances

Distance(I_keys1 I_keys2 nBits | R_nBitWeights [simple]) ⇒
M_distances
- returns the matrix of Tanimoto distances between two arrays of bit-strings.
Each array of N-strings is represented by an iarray I_keys of N*(nBits/32)
elements (e.g. if nBits is 32 , each integer represents 1 bit-string, if nBits i 64,
I_keys1 has two integers for each bit string, etc.). The returned matrix
dimensions are N1 x N2 . The distance is defined as 1. - similarity , where The
Tanimoto similarity between bitstrings is defined as follows: The number of
the on-bits in-common between two strings divided by the number of the on-bits
in either bit-string.
You can provide a relative weight for each bit in a bit-string as a rarray
R_weights. In this case the weighted Tanimoto distance is calculated as
follows:

 distWeighted = 1. - Sum(Wi_of_common_On_Bits) / Sum(Wi_of_On_Bits)

With option simple the similarity calculation is modified so that the number of
bits in common is divided by the number of bits in the second bit-string. For
example:

Distance({3} {1} 32 simple) # returns 0.
Distance({1} {3} 32 simple) # returns 0.5

Example:

Distance({1 2 3},{1 2 3},32)
 #>M
 0. 1. 0.5
 1. 0. 0.5
 0.5 0.5 0.

The diagonal distances are 0; no bits are share between 1 (100..) and 2 (010..)
(distance=1.) and one of two bits is shared between 1 (100..) and 3 (110..).
Instead of the number of bits, one can provide the relative weights for each bit.
The dimension of the bit-weight array then becomes the size of the bit-string.
The weighted Tanimoto is calculated.

See also:

Iarray-bits-to-integers{ Iarray({1 0 0 1 1 0 ..} key) } to generate
compressed integer bit vectors

⋅

Distance matrix between two sets of coordinates

Distance (M_coor1 M_coor2) - returns the matrix of distances between
the rows of the two input matrices. Each matrix row may contain any number of
coordinates coordinates (3 in 3D space).
For example: Distance(Xyz(a_/1:5/ca) Xyz(a_/10:12/ca) returns a 5 by 3
matrix of distances between Ca-s of the two fragments.

Distance(M_xyz1|as1 M_xyz2|as2 r_dist) ⇒ l_yes_if_closer_than_dist This
function returns a logical yes if any two points or atoms in two sets of
coordinates or selections are closer than the threshold.
if Distance (as1 as2 r_dist) then ...

is a more efficient version of this condition:

if Nof(Sphere(as1 as2 r_dist)) > 0

Distance 389

Distance tether

Distance (as [r_defaultLength=-1.])
- returns the real array of lengths of tethers for each selected atom or the
default value (-1.). The default value can be set to any value. Tethers are
assumed to be already set, see command set tether. Also note, that the
expression Distance(as_out) will give the same results if as_out
selection was not changed by another operation; see also special
selections.
Example:
read pdb "1crn"
convert tether # keeps tethers to the pdb original
deviations = Distance(a_//!h*,vt* , 9.9)
perResDevs = Group(deviations, a_//!h*,vt* ,"max") # find max.devs per residue
display ribbon
color ribbon a_/* perResDevs

Another example
 Distance(a_//T) # selects only tethered atoms
 #>R
 1.677
 1.493
 1.386
 1.435
 1.645
 1.570
 2.165
 1.399

Distance Dayhoff

Distance(seq1 seq2
[identity|evolution|new|fast|number|reverse]) ⇒ r

Distance(seqArr[n] seq) ⇒ R_n

- returns the real measure of similarity between two aligned sequences. Zero
distance means 100% identity. The distance is calculated by the following two
steps:

d1 = 1.0 - (nResidueIdentities/Min(Length(Seq1), Length(Seq2)) (d1
belongs to [0.,1.] range)

1.

if there is no identity option the distance is corrected:
Distance(Seq1,Seq2) = DayhoffTransformation(d1)

2.

Transformation practically does not change small distances d1, whereas large
distances, especially above 0.9 (10% sequence identity) are increased to take
occasional reversals into account. Distances d1 within [0.9,1.0] are transformed
to [5.17, 10.] range.

See also: Distance (ali) for distance and seq.identity matrices.

Distance between sequences or alignment sequences

Distance (alignment) ⇒ M_nxn

Distance(seqArr_n) ⇒ M_nxn

Distance(seqArr_n seqArr_m) ⇒ M_nxm

- returns matrix of pairwise sequence-sequence distances in the alignment.
These distances are calculated with the fast option as follows

 1.-(nResidueIdentities-gapPenalty)/Min(Length(Seq1), Length(Seq2))

where gapPenalty is 3 for each gap.
Without the fast option the distances are calculated based on comparison
matrix and gap penalties. These distances are more sensitive but there is no

390 Distance

simple mapping between them and percent identity based distances.
Example:

 read alignment msf s_icmhome+"azurins" # read azurins.msf
 NormCoord = Disgeo(Distance(azurins)) # 2D sequence diversity in
#
calculate pairwise sequence identities
 read alignment "aln" name="aln"
 n=Nof(aln)
 mids = 100*(Matrix(n,n,1.) - Distance(aln)) # the pairwise seq. identities
 t = Table(mids, Name(aln), Name(aln)) # to convert the matrix into pairwise table
 t = Table(mids, index) # a simpler version with i,j

Distance between two alignments

Distance (ali_1 ali_2 [exact])

- returns the real distance between two alignments formed by the same
sequences.
The distance is defined as a number of non-gap columns identical between two
alignments.
Two different normalizations are available:
The default normalization is to the shorter alignment. (Distance (ali_1
ali_2)). In this case the number of equivalent pairs is calculated and is divided
by the total number of aligned pairs in the shorter alignment. This method
detects alignment shifts but does not penalize un-alignment of previously
aligned residue pairs. D = (La_min - N_commonPairs)/La_min In the
following alignment the residue pairs which are aligned in both alignments are
the same, therefore the distance is 0.

 show a1 # La1 = 3
 ABC---XYZ
 ABCDEF---
 show a2 # La2 = 6
 ABCXYZ
 ABCDEF
 Distance(a1,a2) # a1 is a sub-alignment of a2, distance is 0.
 0.

exact option: normalization to the number of pairs of the longer alignment.
By longer we mean the larger number of aligned pairs regardless of alignment
length (the latter includes gaps and ends). D = (La_max -
N_commonPairs)/La_max Now in the above example, La_max = 6 , while
N_commonPairs = 3, the distance is 0.5 (e.g. the alignments are 50% different).

 Distance(a1,a2,exact) # returns 0.5 for the above a1 and a2

Example showing the influence of gap parameters:

 read sequence msf s_icmhome+"azurins.msf"
 gapOpen =2.2
 a=Align(Azu2_Metj Azup_Alcfa) # the first alignment
 gapOpen =1.9 # smaller gap penalty and ..
 b=Align(Azu2_Metj Azup_Alcfa) # the alignment changes
 show 100*Distance(a b) # 20% difference
 show 100*Distance(a b exact) # 21.7% difference
 show a b

The distance of the cluster splitting level

Distance(treeArr i_at separator)

- return the current value of the cluster splitting level set by split command.

Distance 391

Chemical similarity distance

Distance(chemarray [pharmacophore])

- return square matrix of chemical distances. The chemical distance is defined
as the Tanimoto distance between binary fingerprints Option pharmacophore
uses different fingerprints based on ph4-type triplets.

Example:

Distance(Chemical({ "CCC", "CCO"}))

Distance(chemarray1 chemarray2 [pharmacophore])

- return a MxN matrix where M is number of elements in chemarray1
and N is number of elements in chemarray2 Option pharmacophore
uses different fingerprints based on ph4-type triplets.

Example:

Distance(Chemical({ "CCC", "CCO"}) Chemical("CC"))

Zero distance for non-identical compounds.Sometimes non-identical
compounds can give a zero fingerprint distance due to the limitations inherent in
finite length fingerprints. To make the distance more representative, one can mix
different types of distances, e.g. for two chemical arrays X1 and X2

Mdist = Distance(X1, X2) + 0.1*Distance(X1,X2, pharmacophore)

See also: find table find molcart other chemical
functions

Eigen

eigenvalues/eigenvectors function.
Eigen (M)
- returns the square matrix (n x n) of eigenvector columns of the input
symmetric square matrix M_ . All n eigenvalues sorted by their values are stored
in the R_out rarray.
Example:

 A = Matrix(3, 3, 0.) # create a zero square matrix...
 A[1:3,1] = {1.,-2.,-1.} # and set its elements
 A[2,2] = 4.
 for i = 1, 3-1 # the matrix must be symmetric
 for j = i+1, 3
 A[i,j] = A[j,i]
 endfor
 endfor
 X = Eigen(A) # calculate eigenvectors...
 V = R_out # and save eigenvalues in rarray V
 printf "eigenvalue 1 eigenvalue 2 eigenvalue 3\n"
 printf "%12.3f %12.3f %12.3f\n", V[1], V[2], V[3]
 printf "eigenvector1 eigenvector2 eigenvector3\n"
 for i = 1, 3
 printf "%12.3f %12.3f %12.3f\n", X[i,1], X[i,2], X[i,3]
 endfor

Energy

function.
Energy (string)
- returns the real sum of pre-calculated energy and penalty (i.e. geometrical
restraints) terms specified by the string.
Important: this function does NOT calculate the energy, the terms must be
calculated beforehand by invoking one of the following commands where
energy is calculated at least once: show energy, minimize, ssearch
command and montecarlo command.

392 Distance

Note:
Allowed terms in the string are "vw,14,hb,el,to,af,bb,bs,cn,tz,rs,xr,sf";⋅
"func" stands for the total of all the terms, both energy and penalty;⋅
"ener" is only the energy part (i.e. "vw,14,hb,3l,to,af,bb,bs,sf");⋅
"pnlt" is only the penalty part (i.e. "cn,tz,rs,xr").⋅
load conf and load frame commands fill out all the
energy/penalty terms, which are stored in both stacks and trajectory
files (of course the values also depend on a set of free
variables). You can get the energy/penalty terms of the loaded
conformation without explicitly recalculating them.

⋅

Examples:

 read object s_icmhome+"dcLoop.ob"
 show energy
 print Energy("vw,14,hb,el,to") # ECEPP energy

 read stack s_icmhome+"dcLoop.cnf"
 load conf 0
 print Energy("func") # extract the best energy without recalculating it

Energy (rs [simple | base | s_energyTerms])
- in contrast to the previous function this function with an explicit residue
selection calculates and returns residue energies in an ICM object. convert
the object if is not of the ICM type. The energies are calculated according to the
current energy terms , and also depend on the fixation of the object.
Use unfix only V_//S to restore standard fixation.
This function can be used to evaluate normalized residue energies for standard
amino-acids to detect local problems in a model.

For normalized energies, use the simple option. The base option just shifts
the energy value to the mean energy for this residue type. If the simple or
base terms are not used, the current energy terms are preserved. The energies
calculated with the simple or base option are calculated with the
"vw,14,hb,el,to,en,sf" terms. The terms are temporarily enforced as well as the
vwMethod = 2 and vwSoftMaxEnergy values, so that the normalization
performed with the simple option is always correct.
This function will calculate residue energies for all terms and set-ups with the
following exceptions:

electrostatic ("el") term and electroMethod = "boundary element",
"MIMEL", or "generalized Born"

⋅

The s_energyTerms argument allows one to refine the energy terms dynamically
(see example below).
Example:

 read pdb "1crn"
 delete a_W
 convert
 set terms "vw,14,hb,el,to,en,sf"
 group table t Energy(a_/A) "energy" Label(a_/A) "res"
 show t
 unfix V_//*
 group table tBondsAngles Energy(a_/A "bs,bb") "covalent" Label(a_/A) "res"
 show tBondsAngles

See also: the calcEnergyStrain macro.
Energy (conf i_confNumber)
- returns the table of all the energy components for a given stack
conformations.
The table has two arrays:

sarray of the energy term names (.hd) and⋅
rarray of energy values for each energy term (.ey) and⋅

Energy ({ stack | conf })
- returns the rarray of total energies of stack conformations. Useful for

Energy 393

comparison of spectra from different simulations.
Examples:

 read object s_icmhome+"crn.ob"
 set terms only "vw,14,hb,el,to" # set energy terms
 show energy v_//xi* # calculate energy with only
 # side chain torsions unfixed
 # energy depends on what variables are fixed since
 # interactions inside rigid bodies are not calculated,
 # and rigid body structure depends on variables

 a = Energy("vw,14") # a is equal to the sum of two terms

 electroMethod="MIMEL" # MIMEL electrostatics
 set terms only "el,sf" # set energy terms
 show energy
 print Energy("ener") # total energy
 print Energy("sf") # only the surface part of the solvation energy
 print Energy("el") # electrostatic energy
 print r_out # electrostatic part of the solvation energy

Error

function indicates that the previous ICM-shell command has completed with
error.
Error
- returns logical yes if there was an error in a previous command (not
necessarily in the last one). After this call the internal error flag is reinstalled to
no. The shell error flag can be set to yes with the set error command.

Error (string)
- returns string with the last error message. It also returns integer code of the
last error in your script in i_out . In contrast to the logical Error() function,
here the internal error code is not reinstalled to 0, so that you can use it in
expressions like if(Error) print Error(string) .
Error (i_error_or_warning_code) ⇒ l Error (number) ⇒ s - returns
logical yes if an error or warning with the specified code occurred
previously in the script. This call also resets the flag (e.g. Error(415)). This
is convenient to track down certain warnings or errors in scripts (e.g. detecting if
'readpdb{read pdb} found certain problems).
Option number will return a string will previously set error and warning
messages.
To clear all bits use the clear error command.

Examples:

 read pdb "1mng" # this file contains strange 28-th residue
 if (Error) print "These alternative positions will kill me"

 read pdb "1abcd" # file does not exist
 read pdb "1mok"
 clear error

See also: errorAction , s_skipMessages , l_warn, Warning
Error (r_x [reverse])
- returns real complementary error function of real x : erfc(x)=1.-erf(x)) ,
defined as
(2/sqrt(pi)) integral{x to infinity} of exp(-t2) dt
or its inverse function if the option reverse is specified. It gives the
probability of a normally distributed (with mean 0. and standard deviation
1./Sqrt(2.)) value to be larger than r_x or smaller than -r_x.
Examples:

 show 1.-Error(Sqrt(0.5)) # P of being inside +-sigma (about 68%)
 show Error(2.*Sqrt(0.5)) # P of being outside +- 2 sigma

Error (R_x)
- returns rarray of erfc(x)=1.-erf(x)) functions for each element of the real
array (see above).

394 Error

Examples:

 x=Rarray(1000 0. 5.)
 plot display x Error(x) {0. 5. 1. 1. 0. 1. 0.1 0.2 }
 plot display x Log(Error(x),10.) {0. 5. 1. 1.}
 #NB: can be approximated by a parabola
 #to deduce the appr. inverse function.
 #Used for the Seq.ID probabilities.

Error (for SOAP messages)

Error(soapMessage)

- returns a error string from the SOAP message. (empty string if no error)

This function is used the check the result of calling SOAP method.

See: SOAP services for more details and examples.

Exist

function indicates if an ICM-entity exists or not.
Exist (s_fileName [write | read | directory]) - returns logical
yes if the specified file or directory exists, no otherwise. Options:

write open for writing⋅
read open for reading⋅
directory the provided string is a directory (not file)⋅

Exist (key, s_keyName) - returns logical yes if the specified keystroke
has been previously defined. Examples: Exist(key, "F1" , Exist(
key, "Ctrl-B") See also: set key command.
Exist (object) - returns logical yes if there is at least one molecular
object in the shell, no otherwise.
Exist (os1 stack) - returns logical yes if there is a built-in object stack
, no otherwise.
Exist (box) - returns logical yes if the purple box is displayed, no
otherwise.
Exist (view) - returns logical yes if the GL - graphics window is
activated, no otherwise.
Exist (gui) - returns logical yes if the GRAPHICS USER
INTERFACE menus is activated, no otherwise.

Exist (grob display) - returns logical yes if the grob is displayed.
Exist(connect) - returns logical yes if the mouse rotations are
connected to a graphical object (grob) or a molecular object.

Exist(s_table_name sql table) - returns logical yes if there is an
sql table with the specified name exists. It works with the Molcart tables or
tables accessed via the Sql function.

Exist(variable s_varName) - returns yes if the variable exists in the
ICM shell, no otherwise. See also Type(). E.g.

 Exist(variable, "aaa") # returns no
 aaa=234
 Exist(variable, "aaa") # returns yes

Examples:

 if (!Exist("/data/pdb/") then
 unix mkdir /data/pdb
 endif

 if(!Exist(key,"Ctrl-B")) set key "Ctrl-B" "l_easyRotate=!l_easyRotate"

 if !Exist(gui) gui simple

Error (for SOAP messages) 395

Exist(chemarray pattern)

returns logical yes if at least one of the elements contains SMARTS search
attributes, no - otherwise.

Example:

Exist(Chemical("[C&H1,N]") pattern) # returns yes
Exist(Chemical("CCO") pattern) # return no

Database information

Exist(s_dbtable sql table)

- returns logical yes if the specified table exists in the database

See also: molcart

Existenv

function indicating if an UNIX-shell environmental variable exists.
Existenv (s_environmentName)
- returns logical yes if the specified named environment variable exists.
Example:

 if(Existenv("ICMPDB")) s_pdb=Getenv("ICMPDB")

See also: Getenv(), Putenv() .

Extension

function.
Extension (string [dot])
- returns string which would be the extension if the string is a file name.
Option dot indicates that the dot is excluded from the extension.
Extension (sarray [dot])
- returns sarray of extensions. Option dot indicates that the dot is excluded
from the extensions.
Examples:

 print Extension("aaa.bbb.dd.eee") # returns ".eee"
 show Extension({"aa.bb","122.22"} dot) # returns {"bb","22"}
 read sarray "filelist"
 if (Extension(filelist[4])==".pdb") read pdb filelist[4]

Exp

exponential mathematical function (ex).
Exp (real)
- returns the real exponent.
Exp (rarray)
- returns rarray of exponents of rarray components.
Exp (matrix)
- returns matrix of exponents of matrix elements.
Examples:

 print Exp(deltaE/(Boltzmann*temperature)) # probability
 print Exp({1. 2.}) # returns { E, E squared }

Field

function.
Field (s [s_precedingString] i_fieldNumber [s_fieldDelimiter])
- returns the specified field. Parameter s_fieldDelimiter defines the

396 Exist

separating characters (space and tabs by default). If the field number is less than
zero or more than the actual number of fields in this string, the function returns
an empty string.
The s_fieldDelimiter string
Single character delimiter can be specified directly, e.g.

 Field("a b c",3," ") # space
 Field("a:b:c",3,":") # colon

Alternative characters can be specified sequentially, e.g.

 Field("a%b:c",3,"%:") # percent OR colon

Multiple occurrence of a delimiting character can be specified by repeating the
same character two times, e.g.

 Field("a b c",3," ") # two==multiple spaces in field delim
 Field("a%b::::c",3,"%::") # a single percent or multiple colons

You can combine a single-character delimiters and multiple delimiters in one
s_fieldDelimiter string.
More examples:

 s=Field("1 ener glu 1.5.",3) # returns "glu"
 show Field("aaa:bbb",2,":") # returns "bbb"
 show Field("aaa 12\nbbb 13","bbb",1) # returns "13"
 show Field("aaa 12\nbbb 13 14","bbb",2," \n\n") # two spaces and two \n .
another example
 read object s_icmhome+"all"
 # energies from the object comments, the 1st field after 'vacuum'
 show Rarray(Field(Namex(a_*.),"vacuum",1))

Field (S , [s_precedingString] i_fieldNumber [s_fieldDelimiter])
- returns an string array of fields selected from S_ string array .
s_fieldDelimiter is the delimiter. If the field number is less than zero or
more than the actual number of fields in this string, an element of the array will
be an empty string.
Examples:

 show Field({"a:b","d:e"},2,":") # returns {"b","e"}
 s=Field({"aa 2 3.3", "bb 4 1.3", "cc 31a 1.1 3"},2)
 # returns {"2","4","31a"}
 s=Field({"aa 2 3.3", "bb 4 1.3", "cc 31a 1.1 3"},4)
 # returns {"","","3"}

See also: Split().

User field from a selection

Field(as|rs|ms|os [s_fieldName])
Field({ rs | ms | os } [i_fieldNumber])

Field(os 15)

returns rarray of user-defined field values of a selection. Some fields are
filled upon reading a pdb file
Atoms. Only one user defined field can be set to atoms, e.g.

read object s_icmhome+"crn.ob"
set field a_//* Random(0.,1.,Nof(a_//*))
show Field(a_//*)

read pdb "1f88" # rhodopsin, many loops missing
Field(a_ 15) # returns 31. residues
Field(a_ "pmid") # iarray[1] with pubmed id, automatically created by read pdb
set field a_/10,14,21 name="pocket"
display cpk Field (a_/* "pocket")

Field 397

Residues, molecules and objects.
Three user fields can be defined for each residue and up to 16 for molecules and
objects. To extract them specify i_fieldNumber . The level of the selection
determines if the values are extracted from residues, molecules or objects. Use
the selection level functions Res Mol and Obj to reset the level if needed. For
example: Res(Sphere(gg, a_1. 3.)) selects residues of the 1st object
which are closer than 3. A to grob gg .

Upon reading a pdb file the object field 15 contains the number of residues
missing from the ATOM records, but present in SEQRES records due to local
disorder. Example:

read object s_icmhome+"crn.ob"
set field a_/A Random(0.,1.,Nof(a_/A)) number = 2 # set the 2nd field to random values
color a_/* Field(a_/A 2) # color by it

Standard fields:

object: "pmid" - integer pubmed id⋅

See also:
set field as_ [name= s] .. ,⋅
Smooth rs_ to generate 3D-averaged user fields⋅
Select function to select by user defined field (e.g. Select(a_//
"x>-1.")).

⋅

File

function returning file names or attributes of named files.
File (os) returns the name of the source file for this object. If the object was
created in ICM or did not come from an object or PDB file, it returns an empty
string.
Example:

read pdb "/home/nerd/secret/hiv.ob"
File(a_)
 /home/nerd/secret/hiv.ob

File (s_file_or_dir_Name "length")
- returns integer file size or -1.
File (s_file_or_dir_Name "time")
- returns integer modification time or -1. Useful if you want to compare
which of two files is newer.

File (icm_object)
- returns string file name from which this object has been loaded or empty
string.
File (s_file_or_dir_Name)
- returns string with the file or directory attributes separated by space.

Note that this function will only work on Unix or Mac, see a`Exist (s_file ..)
function for cross-platform functions. If file or directory do not exist the
function returns "- - - - 0" Otherwise, it contains the following 4 characters
separated by space and the file size:

type character:
'f' - regular file•
'd' - directory•
'l' - symbolic link•
'c' - character special file•
'p' - pipe•

1.

'r' if you can read the file (or from the directory)2.
'w' if you can write to this file (or directory)3.
'x' if you can execute this file (or cd to this directory)4.
file size in bytes5.

398 File

To get a string with any field use Field(File(s_name), i_fieldNumber) . To get
the size, use Integer(Field(File(s_name),5)).
Example:

 if File("/opt/icm/icm.rst")=="- - - - 0" print "No such file"

 if Field(File("PDB.tab"),2)!= "w" print "can not write"

 if (Indexx(File("/home/bob/icm/") , "d ? w x *")) then
 print "It is indeed a directory to which I can write"
 endif
 # Here the Indexx function matched the pattern.

 if (Integer(Field(File(s_name),5)) < 10) return error "File is too small"

File (last)
returns the file name of the last icm-shell script called by ICM. In scripts
File(last) can be used for the Help section. See also: Path (last)

File (T_IndexTable database)

returns the file name of the first source file indexed. Example:

 read index "nci"
 File(nci database)
 /data/chem/nci.sdf

Find

function searching all fields (arrays) of a table, and to search patterns in
sequences or their names.

Find closest value in array

Find (R_source r_value)

Find (I_source i_value)

- returns index of the source array element which is closest to the value

Example:

Find({10 20 30 40 50} 43) #will return 4 because 40 is the closest value
Find({1. 2. 3.} 100.) #will return 3

See also: Index

Find text in tables.

Find (table s_searchWords)
- returns table containing the entries matching all the words given in the
s_searchWords string.
If s_searchWords is "word1 word2" and table contains arrays a and b this "all
text search" is equivalent to the expression :

 (t.a=="word1" | t.b == "word1") & (t.a=="word2" | t.b == "word2").

Examples:

 read database "ref.db" # database of references
 group table ref $s_out # group created arrays into a table
 show Find(ref,"energy profile") & ref.authors == "frishman"

Find 399

Find (table s_pattern regexp)

- returns table containing the entries where at least one text column matches
s_pattern.

Examples:

add column t { "one" "two" "three" } {"Item1", "Item2" "Item3" }
Find(t "Item[12]" regexp) # matches first two rows
Find(t "two|three" regexp) # matches last two rows

Find chemical substructures.

Find(mol_array, array_of_chemical_patterns S_labels)

Find(mol_array, table_with_chemical_patterns)

returns a 'sarray of chemical-pattern labels found in the mol_array.

If the table argument is provided as the source of the chemical patterns, the
function will look for two columns:

.mol array of chemical patterns⋅
a column called ".LABEL" or ".LABELS" in either upper or lower
case.

⋅

The patterns can be specified using the wild cards permitted by the Molsoft
chemical editor.

Example:

Find(chemTable.mol, Chemical({"c1ccccc1", "[CH3]"}), {"benzene", "methyl"})
or
group table t Chemical({"c1ccccc1", "[CH3]"}) "mol" {"benzene", "methyl"} "label"
Find(chemTable.mol, t)

See also: Index chemical Nof find table find molcart

: Find(sequence)

returns an sarray of sequence names in which the sequence matched the
pattern, e.g.

make sequence 10 # generates 10 random sequences
Find("*A?[YH]*" sequence)

Find(sequence s_seq_name_pattern) searches the pattern in sequence
names rather than sequences.

Floor

rounding function.
Floor (r_real [r_base])
- returns the largest real multiple of r_base not exceeding r_real.
Floor (R_real [r_base])
- returns the rarray of the largest multiples of r_base not exceeding
components of the input array R_real.
Default r_base= 1.0 .
See also: Ceil().

Formula

Formula(chemarray)

- returns the sarray of compounds' molecular formulas.

400 Find

Getarg

function returning the value for an argument to ICM or an icm-script. If one
runs icm directly, specify arguments after the -a option,

e.g.

icm -s -a t=2 verbose c='some text' # three arguments passed to icm
icm_script t=2 verbose c='some text' # three arguments passed to icm_script

A summary of the Getarg functions:

: Getarg()->⋅
: Getarg(name)-> S_argNames⋅
: Getarg(name [delete])-> S_files,e.g. '.icb'⋅
: Getarg(set|list|mol|keep|sarray)-> S_argValues # mol or keep adds
stdin and keep for chunk access

⋅

: Getarg([find|test]) ->⋅

Formula 401

402 Getarg

	Table of Contents
	Introduction
	Release notes
	Brief history of ICM
	ICM distribution and support
	What can you do with ICM? (a program overview)
	Graphics
	Simulations
	Sequence analysis
	Modules of ICM

	Notational conventions
	Common abbreviations
	Getting started
	ICM-shell
	The first steps

	ICM Scripting Tutorials
	Instructions
	Guide to the Tutorials
	Scripting_Basics.icb
	Scripting_Workshop_MolObjects.icb
	Scripting_Workshop_ICM_Scripts.icb
	Scripting_Workshop_Tables.icb
	RegExpr.icb
	Scripting_Workshop_GUI_Programming.icb
	Scripting_Workshop_ActiveICM.icb

	Reference Guide
	ICM command line options
	Command line editing
	Graphics controls
	Editing pairwise sequence-structure alignments
	Constants
	Subsets and Index Expressions
	Molecule intro
	Selections
	Selection Types
	Selection levels
	Examples
	Select by number, range, name or pattern
	Object selection
	Molecule selection
	Residue selection
	Atom selection
	Free and all variables (v_ and V_)
	Functions returning selections
	Finding contiguous residue ranges with the String function

	Regular expressions (regexp)
	ICM regular expression syntax

	Parsing XML example: DrugBank.
	Hierarchical cluster trees
	Selecting N representatives from clusters

	Arithmetics
	Assignment
	Arithmetic operations
	Logical operations
	In place operations.
	Comparison operators
	Advanced operations and some comments

	Flow control
	Loops
	Conditional branching
	Jumps

	ICM molecular objects
	Energy and Penalty Terms
	Integer shell parameters
	autoSavePeriod
	defSymGroup
	i_out
	i_2out
	maxColorPotential
	maxMemory
	minTetherWindow
	mnSolutions
	mncalls
	mncallsMC
	mnconf
	mnhighEnergy
	mnreject
	mnvisits
	nLocalDeformVar
	nSsearchStep
	nProc
	randomSeed
	segMinLength
	sequenceBlock
	sequenceLine
	surfaceAccuracy
	windowSize

	Real shell variables
	addBfactor
	alignMinCoverage
	alignOldStatWeight
	axisLength
	clashThreshold
	cnWeight
	consensusStrength
	dcWeight
	COLOR.bg : background color in 3D graphics
	COLOR.distanceAtom : default colors of interatomic distances
	COLOR.label... default colors of labels.
	CONSENSUS_strength
	densityCutoff
	dielConst
	dielConstExtern
	drop
	fogStart
	gapExtension
	gapOpen
	gpWeights
	hbCutoff
	lineWidth
	listUpdateThreshold
	mapSigmaLevel
	mapAtomMargin
	mcBell
	mcJump
	mcShake
	mcStep
	mfWeight
	mimelDepth
	mimelMolDensity
	r_out
	r_2out
	resLabelShift
	rsWeight
	selectMinGrad
	selectSphereRadius
	sfWeight
	shininess
	ssThreshold
	ssWeight
	ssearchStep
	surfaceTension
	tempLocal
	temperature
	timeLimit
	tolGrad
	tolFunc
	tzWeight
	vicinity
	vwCutoff
	vwExpand
	vwExpandDisplay
	vwSoftMaxEnergy
	waterRadius
	wireBondSeparation
	xrWeight

	Logical variables
	l_antiAlias
	l_autoLink
	l_bpmc
	l_breakRibbon
	l_bufferedOutput
	l_bug
	l_caseSensitivity
	l_commands
	l_confirm
	l_easyRotate
	l_info
	l_minRedraw
	l_neutralAcids
	l_out
	l_print
	l_racemicMC
	l_readMolArom
	l_showAccessibility
	l_showMC
	l_showMinSteps
	l_showResCodeInSelection
	l_showSpecialChar
	l_showSites
	l_showSstructure
	l_showWater
	l_showTerms
	l_updateLists
	l_warn
	l_wrapLine
	l_writeStartObjMC
	l_xrUseHydrogen

	String variables
	s_alignment_rainbow
	s_blastdbDir
	s_editor
	s_entryDelimiter
	s_errorFormat
	s_fieldDelimiter
	s_helpEngine
	s_icmhome
	s_inxDir
	s_icmPrompt
	s_imageViewer
	s_javaCodeBase
	s_labelHeader
	s_lib
	s_logDir
	s_out
	s_pdbDir
	s_pdbDirFtp
	s_pdbDirWeb
	s_projectDir
	s_printCommand
	s_prositeDat
	s_psViewer
	s_reslib
	s_skipMessages : ignore specific error messages
	s_sysCp
	s_sysLs and s_sysLtt
	s_sysMv
	s_sysRm
	s_tempDir
	s_translateString
	s_userDir
	s_usrlib (obsolete)
	s_webEntrezLink
	s_webViewer
	s_xpdbDir

	Preferences
	Persistent Preferences
	accessMethod
	alignMethod
	atomLabelStyle
	atomSingleStyle
	cnMethodAverage
	compareMethod
	dcMethod
	electroMethod
	errorAction
	exitSessionStyle
	ffMethod
	gcMethod
	highEnergyAction
	interruptAction
	mfMethod
	minimizeMethod
	pdbDirStyle
	rejectAction
	resLabelStyle
	ribbonColorStyle
	ribbonStyle
	sequenceColorScheme
	shineStyle
	surfaceMethod
	tzMethod
	varLabelStyle
	visitsAction
	vwMethod
	webEntrezOption
	wireStyle
	xrMethod

	Tables
	CONSENSUS
	CONSENSUSCOLOR
	FILTER
	FTP
	GRAPHICS
	GRID
	GROB
	GUI
	IMAGE
	LIBRARY
	OBJECT
	PLOT
	SITE
	TOOLS
	WEBLINK
	WEBAUTOLINK

	Other shell variables
	defCell
	accFunction
	gapFunction
	I_out
	M_out
	R_out
	R_2out
	S_out
	swissFields
	readMolNames
	Named Atom/Residue/Molecule/Object/Variable Selections
	as_out
	as2_out
	vs_out

	Chemical arrays and tables. Operations, virtual chemistry.
	SMILES and SMARTS
	SOAP services and communications
	Creating your own GUI elements: Programming GUI.
	Commands
	add
	alias
	align
	append (commands)
	assign
	break
	build
	call
	center
	clear
	color
	Coloring 2D molecules in a chemical table
	How to color grob surface by depth
	compare: setting conformation comparison parameters for the montecarlo command
	compress
	connect
	continue
	convert
	copy
	crypt
	Date data-type
	delete ICM shell objects
	display
	edit
	elseif
	endfor
	endif
	endmacro
	Enumeration of stereoisomers
	Tautomer enumeration
	Combinatorial library enumeration
	endwhile
	exit
	find
	fix
	for
	fork
	fprintf
	function
	global command
	goto
	group
	GUI and Programming Dialogs in ICM
	help
	history
	if
	info
	keep
	join tables
	learn from a training data set and create a predictive model
	Link or assign reaction group arrays to a Rx positions on a chemical scaffold.
	link internal variables of molecular object
	Link chains/molecules to sequences and alignments
	list
	list the content of the icm binary file
	list available sequence databases
	list directory
	list molcart
	load
	ICM-shell macros and functions
	make
	minimize
	menu
	modify
	Circular permutation of x,y,z coordinates and cell parameters
	Chemical modifications.
	montecarlo
	move
	pause
	plot
	plot area: show matrix values with color
	predict
	print
	print bar : showing progress bar from ICM shell
	printf
	print image
	Run SQL queries
	quit
	randomize
	read
	rename
	return
	rotate
	select
	set family of commands
	show
	sort
	split
	sprintf
	store
	ssearch
	strip
	superimpose
	Iterative search of the best atom pair subset for superposition.
	sys (or unix): system command
	test
	then
	transform
	translate
	undisplay
	undisplay window
	unfix
	wait
	web
	while
	write

	Functions
	Abs
	Acc
	Acos
	Acosh
	Align
	Angle
	Area
	Asin
	Asinh
	Ask
	Askg
	Atan
	Atan2
	Atanh
	Atom
	Augment
	Axis
	Blob
	Bfactor
	Boltzmann
	Box
	Bracket
	Cad
	Ceil
	Cell
	Charge
	Chemical function. Converting and Generating library compounds.
	Cluster
	Color
	Consensus
	Contour
	Corr
	Cos
	Cosh
	Count
	CubicRoot
	Date
	Deletion
	Descriptor
	Det
	Disgeo
	Distance
	Eigen
	Energy
	Error
	Error (for SOAP messages)
	Exist
	Existenv
	Extension
	Exp
	Field
	File
	Find
	Floor
	Formula
	Getarg

